1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
avanturin [10]
3 years ago
13

You are driving at 30.0 m/s on a freeway curve of radius 25.0 m. What is the magnitude of your acceleration?

Physics
1 answer:
mote1985 [20]3 years ago
4 0

Answer:

36.0 m/s^2

Explanation:

You might be interested in
A horizontal uniform bar of mass 3 kg and length 3.0 m is hung horizontally on two vertical strings. String 1 is attached to the
kirill115 [55]

Answer:

T₁ = 2.8125 N

Explanation:

The equilibrium equation of the moments at the point where string 2 is located on the bar is like this:

∑M₂ = 0

M₂ = F*d

Where:

∑M₂  : Algebraic sum of moments in the the point (2) of the bar

M₂ : moment in the point 2 ( N*m)

F  : Force ( N)

d  : Horizontal distance of the force to the point 2 ( N*m

Data

mb = 3 kg : mass of the  bar

mm = 1.5 kg :  mass of the  monkey

L = 3m : lengt of the bar

g = 9.8 m/s²: acceleration due to gravity

Forces acting on the bar

T₁ : Tension in string 1 (vertical upward)

T₂ : Tension in string 2 (vertical upward)

Wb :Weihgt of the bar (vertical downward)

Wm: Weihgt of the monkey  (vertical downward)

Calculation of the weight of the bar (Wb) and of the monkey(Wm)

Wb = m*g = 3 kg*9.8 m/s² = 29.4 N

Wm = m*g = 1.5 kg*9.8 m/s² = 14.7 N

Calculation of the distances  from forces the point 2

d₁₂ = (3-0.6) m = 2.4m  : Distance from T1 to the point 2

db₂ = (3÷2) m = 1.5 m : Distance from Wb to the point 2

dm₂ = (3÷2) m = 1.5 m : Distance from Wm to the point 2

Equilibrium  of moments at the point  2 on the bar

∑M₂ = 0

T₁(d₁₂) - Wb(db₂) - Wm(dm₂) = 0

T₁(2.4) -3*(1.5) - 1.5*(1.5) = 0

T₁(2.4) =3*(1.5) + 1.5*(1.5)

T₁(2.4) =6.75

T₁ = 6.75 / (2.4)

T₁ = 2.8125 N

5 0
3 years ago
Convert the following to relative uncertainties <br>a) 2.70 ± 0.05cm<br>b) 12.02 ± 0.08cm
DENIUS [597]

data which is expressed in form of following way

a = a_o + \Delta a

here in above expression

a_o = true value

\Delta a = uncertainty in the value

now the relative uncertainty is given as

\frac{\Delta a}{a_o}

now by above formula we can say

a) 2.70 ± 0.05cm

here

True value = 2.70

uncertainty = 0.05

Relative uncertainty = \frac{0.05}{2.70} = 0.0185

b) 12.02 ± 0.08cm

here

True value = 12.02

uncertainty = 0.08

Relative uncertainty = \frac{0.08}{12.02} = 0.00665

4 0
3 years ago
Which best explains how thermal energy is transferred when someone holds a hand above a fire?
Artyom0805 [142]
Heat rises therefore the heat from the fire rises up to your hand... i didnt have any answer choices to work with sorry
5 0
3 years ago
Read 2 more answers
1| Page
andreev551 [17]

Answer:

Polarization occurs when an electric field distorts the negative cloud of electrons around positive atomic nuclei in a direction opposite the field. Polarization P in its quantitative meaning is the amount of dipole moment p per unit volume V of a polarized material, P = p/V.

Explanation:

8 0
2 years ago
Read 2 more answers
Metal sphere A has a charge of − Q . −Q. An identical metal sphere B has a charge of + 2 Q . +2Q. The magnitude of the electric
Goshia [24]

Complete Question:

Metal sphere A has a charge of − Q . −Q. An identical metal sphere B has a charge of + 2 Q . +2Q. The magnitude of the electric force on sphere B due to sphere A is F . F. The magnitude of the electric force on sphere A due to sphere B must be:

A. 2F

B. F/4

C. F/2

D. F

E. 4F

Answer:

D.

Explanation:

If both spheres can be treated as point charges, they must obey the Coulomb's law, that can be written as follows (in magnitude):

F =\frac{kQ*2Q}{r^{2} }

As it can be seen, this force is proportional to the product of the charges, so it must be the same for both charges.

As this force obeys also the Newton's 3rd Law, we conclude that the magnitude of the electric force on sphere A due to sphere B, must be equal to the the magnitude of the force on the sphere B due to the sphere A, i.e., just F.

3 0
3 years ago
Other questions:
  • A 2.0-kg object is attached to a spring (k = 55.6 N/m) that hangs vertically from the ceiling. The object is displaced 0.045 m v
    6·2 answers
  • A 59.3 kg diver jumps off a board
    7·1 answer
  • (b) Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a c
    12·2 answers
  • The copper wire and bulb is connected in a series with 220 V electric supply. Why only an electric bulb glows where as the coppe
    6·1 answer
  • Help me please, help
    7·2 answers
  • A construction worker dropped a brick from a high scaffolding. How fast was? a. How fast was the brick moving after 4.0 s of fal
    6·1 answer
  • 3. An element that is malleable is
    10·2 answers
  • I need help answering these questions! Please!
    7·1 answer
  • Suppose that you'd like to find out if a distant star is moving relative to the earth. The star is much too far away to detect a
    7·1 answer
  • How many main retrofit strategies help solve the ecological problems with suburbs?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!