1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lawyer [7]
4 years ago
6

Q4. (20 points) For a bronze alloy, the stress at which plastic deformation begins is 271 MPa and the modulus of elasticity is 1

19 GPa. (a) What is the maximum load that may be applied to a specimen having a cross-sectional area of 320 mm2 without plastic deformation? (b) If the original specimen length is 131 mm, what is the maximum length to which it may be stretched without causing plastic deformation?
Engineering
1 answer:
babunello [35]4 years ago
3 0

Answer:

a) P = 86720 N

b) L = 131.2983 mm

Explanation:

σ = 271 MPa = 271*10⁶ Pa

E = 119 GPa = 119*10⁹ Pa

A = 320 mm² = (320 mm²)(1 m² / 10⁶ mm²) = 3.2*10⁻⁴ m²

a) P = ?

We can apply the equation

σ = P / A     ⇒    P = σ*A = (271*10⁶ Pa)(3.2*10⁻⁴ m²) = 86720 N

b) L₀ = 131 mm = 0.131 m

We can get ΔL applying the following formula (Hooke's Law):

ΔL = (P*L₀) / (A*E)    ⇒  ΔL = (86720 N*0.131 m) / (3.2*10⁻⁴ m²*119*10⁹ Pa)

⇒  ΔL = 2.9832*10⁻⁴ m = 0.2983 mm

Finally we obtain

L = L₀ + ΔL = 131 mm + 0.2983 mm = 131.2983 mm

You might be interested in
A heat engine that receives heat from a furnace at 1200°C and rejects waste heat to a river at 20°C has a thermal efficiency of
viktelen [127]

Answer:

second-law efficiency  = 62.42 %

Explanation:

given data

temperature T1 = 1200°C = 1473 K

temperature T2 = 20°C  =  293 K

thermal efficiency η = 50 percent

solution

as we know that thermal efficiency of reversible heat engine between same  temp reservoir

so here

efficiency ( reversible ) η1 = 1 - \frac{T2}{T1}      ............1

efficiency ( reversible ) η1  = 1 - \frac{293}{1473}  

so efficiency ( reversible ) η1  = 0.801

so here second-law efficiency of this power plant is

second-law efficiency = \frac{thernal\ efficiency}{0.801}

second-law efficiency = \frac{50}{0.801}  

second-law efficiency  = 62.42 %

3 0
3 years ago
Car insurance incentives and discounts are available depending on _____. A. school attendance and driver skill B. vehicle type a
WARRIOR [948]

Answer:D. Location, vehicle type, and driving habits

5 0
3 years ago
Read 2 more answers
What technology has been used for building super structures​
AleksAgata [21]

Answer: Advanced technologixal machines

Explanation: such as big cranes, multiple workers helping creat said structure, and big bull dozers

7 0
3 years ago
Foam weather stripping is often placed in the frames of doors and
Firdavs [7]

Answer:

prevents weathering

Explanation:

6 0
3 years ago
How do I do this?<br> Blueprints, complete the missing view.
Ymorist [56]

Explanation:

Look at the drawings and decide which view is missing. Front? Side? Top? Then draw it

7 0
3 years ago
Other questions:
  • How does the map scale help to interpret the map?
    14·2 answers
  • Show that the solution of thin airfoil theory of a symmetric airfoil given below satisfies the Kutta condition. What angle of at
    11·1 answer
  • A water tower that is 90 ft high provides water to a residential subdivision. The water main from the tower to the subdivision i
    10·1 answer
  • Consider the titration of 100.0 mL of 0.200 M CH3NH2 by 0.100 M HCl.
    13·1 answer
  • What did the discovery of the Cumberland Gap mean for exploration? PLEASE HELP ILL GIVE YOU BRAINLEIST!
    15·1 answer
  • Glyphicons is mainly used for​
    12·1 answer
  • How do Geothermal plowerplants relate to engineering?
    11·1 answer
  • How much does it cost to replace a roof on a 2,200 square foot house.
    10·1 answer
  • As you push a toggle bolt into a wall, the
    13·1 answer
  • ceramics must be heated in order to harden the clay and make it durable. the equipment used to heat the clay
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!