Option c) 1.5 V
Explanation:
<em>As the circuit is build in series first we will find the current passing through the complete circuit. Current stays the same in each element is the series cirucuit, however, the voltage is different.</em>
Voltage is given by the following formula:
V = IR
<em>Because we have to find current through whole circuit, we will first find resistance of the whole circuit.</em>
Equivalent Resistance R(eq): R1 + R2 = 60 + 60 = 120 ohm
Current passing through whole circuit be:
= 0.025
Now we will find out the voltage between C and D:
Current stays the same in series circuit: I = 0.025 c
Resistance between C and D is, R = 60 ohm
Voltage becomes, V = IR = 0.025 * 60 = 1.5 V
Answer:
0.04225 Nm
Explanation:
N = Force applied = 5 N
= Coefficient of static friction = 0.65
d = Diameter of knob = 1.3 cm
r = Radius of knob = 
Force is given by

When we multiply force and radius we get torque
Torque on thumb

Torque on forefinger

The total torque is given by

The most torque that exerted on the knob is 0.04225 Nm
But we do not know whether the force is pushing or pulling (the same direction (both forces are parallel) but: .........[ ]<-F-- or .......[ ]--F-->). I suppose the correct answer is B
Answer:
The magnetic field is
Explanation:
From the question we are told that
The mass of the metal rod is 
The current on the rod is 
The distance of separation(equivalent to length of the rod ) is 
The coefficient of kinetic friction is 
The kinetic frictional force is 
The constant speed is 
Generally the magnetic force on the rod is mathematically represented as

For the rod to move with a constant velocity the magnetic force must be equal to the kinetic frictional force so

=> 
=> 
=> 