Answer
given,
angle with horizontal = 12°
constant speed with the slope = 1 m/s
Work on the skier to move 8 m = 900 J
a) Rope moved with constant speed
change in kinetic energy is equal to zero
work done by the force of the rope = 900 J
rate of force of the rope when skier move with
b) v = 1 m/s total time t = 8 s
Power =
=
= 112.5 W
c) v = 2 m/s total time t = 8/2 = 4 s
Power =
=
= 225 W
Answer:
Increase
Explanation:
The best way for me to visualize the relation between wavelength, frequency, and energy is to think about actual ocean waves. Wavelength is a measure of the distance between two equivalent points on consecutive waves (think wave peak to wave peak). Lets say you are building a sand castle and want to see how many waves hit your castle over a period of 10 seconds. If the distance between each wave is 10 ft and the wave is traveling at 1 foot per second then you will only have one wave hit your castle. If the wavelength is 1/2 that (5 ft) then you will have 2 waves hit your castle in the same amount of time. This is the same concept behind waves in physics. The smaller the distance between each wave, the more waves and therefore more energy that will be delivered.
For the same reason that you can skate around a curve at constant speed but not with constant velocity.
The DIRECTION you're going is part of your velocity, but it's not part of your speed.
If the DIRECTION changes, that's a change of velocity.
The object doesn't have to change speed to have a different velocity. A change of direction is enough to do it.
And any change of velocity is called acceleration.
It's geography,
tropical climate
Answer:
d. remains same
Explanation:
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Force = mass * acceleration
If both the mass of the body and the force acting on it are doubled, then acceleration remains the same.
Given the following data;
Mass = 2Mass
Force = 2Force
Substituting into the formula, we have;