To solve this problem, we are going to use the formula for
work which is Fd where x and y are measured separately.
X direction: W = 13.5 x 230 = 3105 Joules
Y direction: W = -14.3 x -165 = 2360 Joules
So the total work is getting the sum of the two: 3105 + 2360
= 5465 Joules
<span>Freezing involves the decrease in value of latent heat by 80 Cal/gm and a change of state from the Liquid phase to the solid phase.
So, in short, Fill in the blank as follows:
1st blank = Release/decrease
2nd blank = Liquid
Hope this helps!
</span>
Answer:
In ideal case, when no resistive forces are present then both the balls will reach the ground simultaneously. This is because acceleration due to gravity is independent of mass of the falling object. i.e. g = GM/R² where G = 6.67×10²³ Nm²/kg², M = mass of earth and R is radius of earth.
Let us assume that both are metallic balls. In such case, we have to take into account the magnetic field of earth (which will give rise to eddy currents, and these eddy currents will be more, if surface area will be more) and viscous drag of air ( viscous drag is proportional to radius of falling ball), then bigger ball will take slightly more time than the smaller ball.
Explanation:
In ideal case, when no resistive forces are present then both the balls will reach the ground simultaneously. This is because acceleration due to gravity is independent of mass of the falling object. i.e. g = GM/R² where G = 6.67×10²³ Nm²/kg², M = mass of earth and R is radius of earth.
Let us assume that both are metallic balls. In such case, we have to take into account the magnetic field of earth (which will give rise to eddy currents, and these eddy currents will be more, if surface area will be more) and viscous drag of air ( viscous drag is proportional to radius of falling ball), then bigger ball will take slightly more time than the smaller ball.
1) sound velocity reported by you : 292.39 m /s
2) time to travel 1620m at that velocity: t = d / v = 1620 m / 292.39 m/s = 5.54 s, since the moment the sound wave started.
3) You might wanted to tell the time since you watched the lightning.
Then you can calculate the time since the lighting was generated,1620 m away from you, until you saw it, using the speed of light:
speed of light = 3*10^8 m/s => t = 1620 m / (3*10^8m/s) =0.0000054 s
Then, this time is completely neglectible, and yet the answer is 5.54 s, as calculated in the step 2.
Answer:
The answer is
<h2>2560 J</h2>
Explanation:
The kinetic energy of an object given it's mass and velocity can be found by using the formula

where
m is the mass
v is the velocity
From the question
m = 80 kg
v = 8 m/s
The kinetic energy is

We have the final answer as
<h3>2560 J</h3>
Hope this helps you