Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
Answer:
A.) 1372 N
B.) 1316 N
C.) 1428 N
Explanation:
Given that a 140 kg load is attached to a crane, which moves the load vertically. Calculate the tension in the cable for the following cases:
a. The load moves downward at a constant velocity
At constant velocity, acceleration = 0
T - mg = ma
T - mg = 0
T = mg
T = 140 × 9.8
T = 1372N
b. The load accelerates downward at a rate 0.4 m/s??
Mg - T = ma
140 × 9.8 - T = 140 × 0.4
1372 - T = 56
-T = 56 - 1372
- T = - 1316
T = 1316N
C. The load accelerates upward at a rate 0.4 m/s??
T - mg = ma
T - 140 × 9.8 = 140 × 0.4
T - 1372 = 56
T = 56 + 1372
T = 1428N
Answer:
35 N to the right.
Explanation:
450 is going to the right so you subtract what is going against it. Which gives you 35. And because 450 is bigger than 415, it'll be going to the right.
A charged particle has an electrostatic field surrounding it.
When the particle is in motion, the moving charge is an
electric current, and that has a magnetic field around it.
Answer:
Pluto.
Explanation:
an observary in Flagstaff, Arizona, discorvered it.