Answer:
Explanation:
Use one of your experimentally determined values of k, the activation energy you determined, and the Arrhenius equation to calculate the value of the rate constant at 25 °C. Alternatively, you can simply extrapolate the straight line plot of ln(k) vs. 1/T in your notebook to 1/298 , read off the value of ln(k), and determine the value of k. Please put your answer in scientific notation. slope=-12070, Ea=100kJ/mol, k= 0.000717(45C), 0.00284(55C), 0.00492(65C), 0.0165(75C), 0.0396(85C)
Explanation;
According to Arrhenius equation:
i.e. ln(k2/k1) = -Ea/R (1/T2 - 1/T1)
Where, k1 = 0.000717, T1 = 45 oC = (45+273) K = 318 K
T2 = 25 oC = (25 + 273) K = 298 K
i.e. ln(k2/0.000717) = -12070 (1/298 - 1/318)
i.e. ln(k2/0.000717) = -2.54738
i.e. k2/0.000717 = 
= 0.078286
Therefore, the required constant (k2) = 0.078286 * 0.000717 = 
Active transport is the moving of molecules across the membrane of the cell against the concentration gradient with the use of ATP.
Low to high concentration. Concentration gradient is the diffusion (movement of molecules from regions of low concentration) from high to low with the gradient. Active transport is from low to high, against the gradient.
Answer:
B. The [H1+] >[OH1-] and the solution is acidic
If one starts with 0.020 g of Mg, 0.0008 moles of H2 would be made if the reaction is complete.
Going by the balanced equation of reaction in the image, 1 mole of Mg will produce 1 mole of H2 in a complete reaction.
If 0.020 g of Mg is started with:
mole of Mg = mass/molar mass
= 0.020/24.3
= 0.0008 moles
Since the mole of Mg to H2 is 1:1, thus, 0.0008 moles of H2 will also be made from the reaction.
More on stoichiometry can be found here: brainly.com/question/9743981