The lungs art part of The excretory<span> system....
</span><span>somatic nervous system is ..... </span><span>autonomic nervous system<span>....
</span></span>
The process in which organ systems work to maintain a stable internal environment is called homeostasis. Keeping a stable internal environment requires constant adjustments. Here are just three of the many ways that human organ systems help the body maintain homeostasis:
Respiratory system: A high concentration of carbon dioxide in the blood triggers faster breathing. The lungs exhale more frequently, which removes carbon dioxide from the body more quickly.
Excretory system: A low level of water in the blood triggers retention of water by the kidneys. The kidneys produce more concentrated urine, so less water is lost from the body.
Endocrine system: A high concentration of sugar in the blood triggers secretion of insulin by an endocrine gland called the pancreas. Insulin is a hormone that helps cells absorb sugar from the blood.
When the pump removed the air in the bell, the balloon expanded.
<u>Option: B</u>
<u>Explanation:</u>
In order to construct our own environment in the glass jar known as bell jar system, which can be used to explore and consider our larger environment on Earths, for an instance. Here a glass jar that hinges on an airtight rubber basis i.e seals appropriately. At the top of the jar, a bung is connected to it which passed via a metal tube. It has an adjacent flexible tube that goes to a hand vacuum pump and the best hand-powered pump was made with a wine preserver.
When the pump extracts the air from the bell jar, the pressure inside the balloon naturally decreases. The balloon usually has a air pressure around it, which restricts its size, but when this air is extracted and the pressure around it decreases the gas in the balloon will expand and the balloon seems to be inflating. When you release the air back into the bell jar, it will once again compress back to its actual size.
Answer:
100 cc
Explanation:
Heat released in cooling human body by t degree
= mass of the body x specific heat of the body x t
Substituting the data given
Heat released by the body
= 70 x 3480 x 1
= 243600 J
Mass of water to be evaporated
= 243600 / latent heat of vaporization of water
= 243600 / 2420000
= .1 kg
= 100 g
volume of water
= mass / density
= 100 / 1
100 cc
1 / 10 litres.
Answer:x=2 and x=3
Explanation:
Given
Potential Energy for a certain mass is

and we know force is given by


For Force to be zero F=0




Therefore at x=2 and x=3 Force on particle is zero.