<u>Note that</u>:
The gravitational potential energy = 
where m: is the mass, g: the acceleration due to the gravity and h is the height from the earth surface
Then, we can increase the gravitational potential energy by increasing the mass or the height from the earth surface
<u>In our question</u>, we can increase the gravitational potential energy by
<u>A) Strap a boulder to the car so that it wights more.</u>
Answer:
Science is the study of the natural world by collecting data through a systematic process called the scientific method. And technology is where we apply science to create devices that can solve problems and do tasks. Technology is literally the application of science
Explanation:
With the increase in the temperature of the star, the brightness of the stars will also increase.
<u>Explanation:</u>
The brightness and surface temperature of stars ordinarily increment with age. A star stays close to its underlying situation on the fundamental arrangement until a lot of hydrogen in the center has been devoured, at that point starts to advance into a progressively brilliant star.
The brightness of a star relies upon its structure and how far it is from the planet. Space experts characterize star brilliance as far as clear extent — how splendid the star shows up from Earth — and outright greatness — how brilliant the star shows up at a standard separation
- The mechanic did 5406 Joules of work pushing the car.
That's the energy he put into the car. When he stops pushing, all the energy he put into the car is now the car's kinetic energy.
- Kinetic energy = (1/2) (mass) (speed²)
And there we have it
- The car's mass is 3,600 kg.
- Its speed is 'v' m/s .
- (1/2) (mass) (v²) = 5,406 Joules
(1/2) (3600 kg) (v²) = 5406 joules
1800 kg (v²) = 5406 joules
v² = (5406 joules) / (1800 kg)
v² = (5406/1800) (joules/kg)
= = = = = This section is just to work out the units of the answer:
- v² = (5406/1800) (Newton-meter/kg)
- v² = (5406/1800) (kg-m²/s² / kg)
= = = = =
v = √(5406/1800) m/s
<em>v = 1.733 m/s</em>
Answer:
<em>The change in momentum of the car is 3575 Kg.m/s</em>
Explanation:
<u>Impulse and Momentum</u>
The impulse (J) experienced by the object equals the change in momentum of the object (Δp).
The formula that represents the above statement is:
J = Δp
The impulse is calculated as
J = F.t
Where F is the applied force and t is the time.
The car hits a wall with a force of F=6500 N and stops in 0.55 s. Thus, the impulse is:
J = 6500 * 0.55
J = 3575 Kg.m/s
The change in momentum of the car is:

The change in momentum of the car is 3575 Kg.m/s