Answer:
240 Newtons
Explanatiohn:
f = m × a
f = 120 × 2
f = 240 Newtons
<h3>The force is 240 Newtons</h3>
The force needed to accelerate an elevator upward at a rate of
is 2000 N or 2 kN.
<u>Explanation:
</u>
As per Newton's second law of motion, an object's acceleration is directly proportional to the external unbalanced force acting on it and inversely proportional to the mass of the object.
As the object given here is an elevator with mass 1000 kg and the acceleration is given as
, the force needed to accelerate it can be obtained by taking the product of mass and acceleration.


So 2000 N or 2 kN amount of force is needed to accelerate the elevator upward at a rate of
.
The force applied by the competitor is littler than the heaviness of the barbell. At the point when the barbell quickens upward, the power applied by the competitor is more prominent than the heaviness of the barbell. When it decelerates upward, the power applied by the competitor is littler than the heaviness of the barbell.
Answer:
Force is 57.69 N to the opposite direction of motion of dolphin.
Explanation:
We have force is the product of mass and acceleration.
That is
Force = Mass x Acceleration
F = ma
Mass of dolphin, m = 30 kg
We have equation of motion, v = u + at
Final velocity, v = 7 m/s
Initial velocity, u = 12 m/s
Time, t = 2.60 s
Substituting
7 = 12 + a x 2.6
a = -1.92 m/s²
Force, F = 30 x -1.92 = -57.69 N
So the force is 57.69 N to the opposite direction of motion of dolphin.