Answer:
The simplified expression for the fraction is 
Explanation:
From the given information:
O3* → O3 (1) fluorescence
O + O2 (2) decomposition
O3* + M → O3 + M (3) deactivation
The rate of fluorescence = rate of constant (k₁) × Concentration of reactant (cO)
The rate of decomposition is = k₂ × cO
The rate of deactivation = k₃ × cO × cM
where cM is the concentration of the inert molecule
The fraction (X) of ozone molecules undergoing deactivation in terms of the rate constants can be expressed by using the formula:



since cM is the concentration of the inert molecule
Answer:
When substances do not mix thoroughly and evenly (like sand and gravel), the mixture is said to be heterogeneous. A heterogeneous mixture consists of visibly different substances. Another example of a mixture is salt dissolved in water.
Hope it helps!
Yes, it does, just like any other sugar or substance
The cubic unit cell this metal crystallize as is BCC structure .
<h3>
What is unit cell ?</h3>
The structure of a crystalline solid, whether a metal or not, is best described by considering its simplest repeating unit, which is referred to as its unit cell.
The unit cell consists of lattice points that represent the locations of atoms or ions.
The entire structure then consists of this unit cell repeating in three dimensions

n= 2
Hence our assumption was correct
It is a BCC structure .
Therefore the cubic unit cell this metal crystallize as is BCC structure .
To know more about unit cell
brainly.com/question/13110055
#SPJ1
If i’m correct it’s b, bouyance force.