1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yanalaym [24]
3 years ago
13

A 10-cm-long thin glass rod uniformly charged to 8.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 8.00 nCnC ar

e placed side by side, 4.20 cmcm apart. What are the electric field strengths E1E1E_1 to E3E3E_3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods
Physics
1 answer:
ch4aika [34]3 years ago
8 0

Complete Question

A 10-cm-long thin glass rod uniformly charged to 8.00 nC and a 10-cm

long thin plastic rod uniformly charged to -8.00 nC are placed side by

side, 4.20 cm apart. What are the electric field strengths E_1 to E_3 at

distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line

connecting the midpoints of the two rods

a.) Specify the electric field strength E1

b.) Specify the electric field strength E2

c.) Specify the electric field strength E3

Answer:

              E_1=7.13*10^5 N/C

             E_2= 2.95*10^{5} N/C

              E_3= 3.84*10^5 N/C

Explanation:

  From the question we are told that

          The length of the thin glass is  L = 10 cm

          The  charge on the glass rod is  q_g = 8.00nC = 8* 10^{-9} C

           The length of the plastic rod is  L_p = 10cm

             The charge on the  plastic rod is q_p =- 8.00nC = -8.0*10^{-9}C

           The distance between the materials  is d = 4.20cm = \frac{4.2}{100} =0.042m

          The various distances to obtain electric field of are r_1 = 1.0cm

                                                                                                r_2 = 2.0cm

                                                                                                 r_3 = 3.0cm

The objective of the solution is to obtain the electric field E_1 , E_2 \ and E_3 at distance d_1 , d_2 \ and \ d_3  from the glass rod  along the line connecting its mid point  

   Generally electric field of a charge rod at a distance of r the line dividing the rod  into half  is mathematically represented as

                              E = k \frac{2Q}{r\sqrt{L^2 + 4r^2} }

For the  r_2 = 1.0cm = \frac{1}{100} = 0.01m

The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r \sqrt{L^2 + 4r^2_1} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_1) \sqrt{L^2 + 4r^2_1} }

The net electric field is,

            E_{net} =E_1= E_l + E_r

                    = k \frac{2Q}{r_1\sqrt{L^2 + 4 r^2_1 } } + k \frac{2Q}{(0.04-r_1) \sqrt{L^2 + 4 (0.044 -r_1)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.01)\sqrt{(0.01^2 + 4(0.01)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.01)\sqrt{(0.01)^2 + (4) (0.042 - 0.01)^2} }

                           = 6.44*10^5 + 6.9*10^4

                           E_1=7.13*10^5 N/C

For the  r_2 = 2.0cm = \frac{2}{100} = 0.02m

           The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r_2 \sqrt{L^2 + 4r^2_2} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_2) \sqrt{L^2 + 4r^2_2} }

The net electric field is,

            E_{net} =E_2= E_l + E_r

                    = k \frac{2Q}{r_2\sqrt{L^2 + 4 r^2_2 } } + k \frac{2Q}{(0.04-r_2) \sqrt{L^2 + 4 (0.044 -r_2)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.02)\sqrt{(0.02^2 + 4(0.02)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.02)\sqrt{(0.02)^2 + (4) (0.042 - 0.02)^2} }

            = 1.6*10^{5}+ 1.3*10^{5}

             E_2= 2.95*10^{5} N/C

For the  r_3 = 3.0cm = \frac{3}{100} = 0.03m

           The electric filed by the positively charge glass rod on the left side of the dividing line is mathematically represented as

                               E_l =  k \frac{2Q }{r_3 \sqrt{L^2 + 4r^2_3} }

The electric filed by the positively charge glass rod on the right  side of the dividing line is mathematically represented as  

                            E_r =  k \frac{2Q }{(0.044 - r_3) \sqrt{L^2 + 4r^2_3} }

The net electric field is,

            E_{net} =E_3= E_l + E_r

                    = k \frac{2Q}{r_3\sqrt{L^2 + 4 r^2_3 } } + k \frac{2Q}{(0.04-r_3) \sqrt{L^2 + 4 (0.044 -r_3)^2} }

Where k is  know as the coulomb's constant  with a constant value of

                  k = 9*10^9 \ kgm^3 s^{-4} A^{-2}

           =(9*10^9) \frac{(2) (8*10^{-9})}{(0.03)\sqrt{(0.03^2 + 4(0.03)^2)} }  + (9* 10^9 ) \frac{(2)(8*10^{-9})}{(0.0420 - 0.03)\sqrt{(0.03)^2 + (4) (0.042 - 0.03)^2} }

        = 7.2 *10^{4} + 3.1*10^5

      E_3= 3.84*10^5 N/C                

You might be interested in
A unit for measuring frequency is the
jonny [76]
A.) Hertz is the measuring unit for frequency!!
[Your explanation is correct]

Hope this helps!
4 0
3 years ago
Jose’s lab instructor gives him a solution of sodium phosphate that is buffered to a pH of 4. Because of an error that he made w
Kazeer [188]
I am thinking that maybe the problem is not with the calibration. It might be that the buffered solution is already expired since at this point the solution is already not stable and will give a different pH reading than what is expected.
7 0
3 years ago
A storm is moving at 15 km/hr what to do to determine its velocity
WINSTONCH [101]
Check the current weather map for 2 different times, and see where the center of the storm is. That tells you what direction it's moving. With its speed and direction, you have its velocity.
6 0
3 years ago
A net force of 60 N north acts on an object with a mass of 30 kg. Use Newton's second law of
earnstyle [38]

Answer:

Explanation:

F = ma. For us, this looks like

60 = 30a and

a = 2 m/s/s

If the force goes up to, say, 90, then

90 = 30a and

a = 3...if the force goes up, the acceleration also goes up.

If the mass goes up to say, 60, and the force stays the same, then

60 = 60a and

a = 1...if the mass goes up, the acceleration goes down.

7 0
3 years ago
A(n) _______ studies physical components and characteristics of celestial objects.
inna [77]

Answer:

Astronomers?

Explanation:

5 0
2 years ago
Other questions:
  • And a hydraulic system piston one has the surface area of 100 cm² and piston to has a surface area of 900 cm² piston one exerts
    10·1 answer
  • Calculate the minimum amount of energy, in joules, required to completely melt 145 g of silver initially at 22.0°C. The melting
    8·1 answer
  • The four living things seen here, dog, flower, algae, and bacteria, are all made of cells. A - C are multicellular, but D is uni
    9·2 answers
  • 12) Photosynthesis is a chemical reaction where carbon dioxide and water react to form glucose (C6H12O6) and oxygen gas. Which r
    12·2 answers
  • What is the best approximate value for the elastic potential energy (EPE) of the spring elongated by 3.0 meters?
    8·1 answer
  • The probe used in a medical ultrasound examination emits sound waves in air that have a wavelength of 0.12 mm. What is the wavel
    14·1 answer
  • n explosion breaks an object initially at rest into two pieces, one of which has 2.0 times the mass of the other. If 8400 J of k
    7·2 answers
  • A particle moving with initial velocity of 5m/s is subjected to a uniform acceleration of -2.5 m/s2.find the displacement for ne
    10·1 answer
  • The bands on Jupiter are ultimately caused by...
    12·1 answer
  • A 0. 50 l sample of a gas has a mass of 11. 3 g at stp. what is the mass of 1. 00 mol of this gas? in other words, what is the m
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!