<span>187.56 g/mol
That is the answer</span>
<span>The Core and an inhomogeneous Mantle cause diffraction of P-waves. </span>P-waves<span> are a type of elastic seismic wave </span><span>that travel through a continuum and are the first </span>waves<span> from an earthquake to arrive at a seismograph.</span>
Answer:
Mass = 182.4 g
Explanation:
Given data:
Number of moles of Al₂O₃ = 3.80 mol
Mass of oxygen required = ?
Solution:
Chemical equation:
4Al + 3O₂ → 2Al₂O₃
Now we will compare the moles of aluminum oxide and oxygen.
Al₂O₃ : O₂
2 : 3
3.80 : 3/2×3.80 = 5.7
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 5.7 mol × 32 g/mol
Mass = 182.4 g
Answer:
The degree of dissociation of acetic acid is 0.08448.
The pH of the solution is 3.72.
Explanation:
The ![pK_a=4.756](https://tex.z-dn.net/?f=pK_a%3D4.756)
The value of the dissociation constant = ![K_a](https://tex.z-dn.net/?f=K_a)
![pK_a=-\log[K_a]](https://tex.z-dn.net/?f=pK_a%3D-%5Clog%5BK_a%5D)
![K_a=10^{-4.756}=1.754\times 10^{-5}](https://tex.z-dn.net/?f=K_a%3D10%5E%7B-4.756%7D%3D1.754%5Ctimes%2010%5E%7B-5%7D)
Initial concentration of the acetic acid = [HAc] =c = 0.00225
Degree of dissociation = α
![HAc\rightleftharpoons H^++Ac^-](https://tex.z-dn.net/?f=HAc%5Crightleftharpoons%20H%5E%2B%2BAc%5E-)
Initially
c
At equilibrium ;
(c-cα) cα cα
The expression of dissociation constant is given as:
![K_a=\frac{[H^+][Ac^-]}{[HAc]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BAc%5E-%5D%7D%7B%5BHAc%5D%7D)
![1.754\times 10^{-5}=\frac{c\times \alpha \times c\times \alpha}{(c-c\alpha)}](https://tex.z-dn.net/?f=1.754%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7Bc%5Ctimes%20%5Calpha%20%5Ctimes%20c%5Ctimes%20%5Calpha%7D%7B%28c-c%5Calpha%29%7D)
![1.754\times 10^{-5}=\frac{c\alpha ^2}{(1-\alpha)}](https://tex.z-dn.net/?f=1.754%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7Bc%5Calpha%20%5E2%7D%7B%281-%5Calpha%29%7D)
![1.754\times 10^{-5}=\frac{0.00225 \alpha ^2}{(1-\alpha)}](https://tex.z-dn.net/?f=1.754%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B0.00225%20%5Calpha%20%5E2%7D%7B%281-%5Calpha%29%7D)
Solving for α:
α = 0.08448
The degree of dissociation of acetic acid is 0.08448.
![[H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%20%3D%200.00225M%5Ctimes%200.08448%3D0.0001901%20M)
The pH of the solution ;
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
![=-\log[0.0001901 M]=3.72](https://tex.z-dn.net/?f=%3D-%5Clog%5B0.0001901%20M%5D%3D3.72)