To solve this problem, we should recall that
the change in enthalpy is calculated by subtracting the total enthalpy of the reactants
from the total enthalpy of the products:
ΔH = Total H of products – Total H of reactants
You did not insert the table in this problem, therefore I
will find other sources to find for the enthalpies of each compound.
ΔHf CO2 (g) = -393.5 kJ/mol
ΔHf CO (g) = -110.5 kJ/mol
ΔHf Fe2O3 (s) = -822.1 kJ/mol
ΔHf Fe(s) = 0.0 kJ/mol
Since the given enthalpies are still in kJ/mol, we have to
multiply that with the number of moles in the formula. Therefore solving for ΔH:
ΔH = [<span>3 mol </span><span>( − </span><span>393.5 </span>kJ/mol<span>) + 1 mol (</span>0.0
kJ/mol)<span>] − [</span><span>3 mol </span><span>( − </span><span>110.5 </span>kJ/mol<span>) + </span><span>2 mol </span><span>( − </span><span>822.1 </span>kJ/mol<span>)]</span>
ΔH = <span>795.2
kJ</span>
Fats (triglycerides) that contain palmitic acid and stearic acid are therefore known as saturated fats. Fats made up of saturated fatty acids are solid at room temperature. ... Because it is polyunsaturated, it is liquid at room temperature.
Solids are packed together closely, liquids are farther apart but still relatively close, and gases are very far apart with lots of space.
No. of moles = mass / molar mass
= 100/35.5