Answer:
a) F = 4.9 10⁴ N, b) F₁ = 122.5 N
Explanation:
To solve this problem we use that the pressure is transmitted throughout the entire fluid, being the same for the same height
1) pressure is defined by the relation
P = F / A
to lift the weight of the truck the force of the piston must be equal to the weight of the truck
∑F = 0
F-W = 0
F = W = mg
F = 5000 9.8
F = 4.9 10⁴ N
the area of the pisto is
A = pi r²
A = pi d² / 4
A = pi 1 ^ 2/4
A = 0.7854 m²
pressure is
P = 4.9 104 / 0.7854
P = 3.85 104 Pa
2) Let's find a point with the same height on the two pistons, the pressure is the same
where subscript 1 is for the small piston and subscript 2 is for the large piston
F₁ = 
the force applied must be equal to the weight of the truck
F₁ =
F₁ = (0.05 / 1) ² 5000 9.8
F₁ = 122.5 N
Answer:

Explanation:
We know that the frequency of the nth harmonic is given by
, where
is the fundamental harmonic. Since we have the values of two consecutive frequencies, we can do:

Which for our values means (we do not need the value of <em>n</em>, that is, which harmonics are the frequencies given):

Now we turn to the formula for the vibration frequency of a string (for the fundamental harmonic):

So the tension is:

Which for our values is:

Illluminance is the measurement of photometric power. That means, illuminance is the rate of photometric flux that is received by a surface per area. It is usually expressed as a unit of W/m^2.
Thus, from the choices, the answer we're looking for is illuminance<span>.</span>
Answer:
The thrust is 
Explanation:
Given that,
Mass of gas, 
The rate at which the gas is expelling, 
We need to find the thrust produced by the gas.
We know that force is equal to the rate of change of momentum. So,

Also, p = mv

So,

So, the thrust is 
Answer:
3.31m/s
Explanation:
Angular momentum for 3s is



Moment if inertia is


Angular speed
ω = L/I

The speed of each ball is
V = ωL
