Answer:
V = 5.83 m/s
Explanation:
Given that,
Mass of a ball of a clay, m = 2 kg
Initial speed of the clay, u = 35 m/s
Mass of a box, m' = 10 kg
Initially, the box was at rest, u' = 0
We need to find the velocity of the box after the collision. Let V be the common speed. Using the conservation of momentum to find it.

So, the velocity of the box after the collision is equal to 5.83 m/s.
Explanation:
We know,
1KN = 1000N
Then, Force(F) = 5*1000N
=5000N
Here,
Power (P)=Work(W)/Time(T)
=Force * distance/ Time (W = F*s)
= 5000*15/75
=1000
So, The power of body or object is 1000Watt.
I hope this will be helpful for you.
If ball 1 has a higher speed than ball 2, then ball 1 has higher kinetic energy than ball 2, since kinetic energy is the energy of movement.
Answer:
Angular frequency is 20 rad/s.
Explanation:
Given that,
A block is attached to an oscillating spring. The function below shows its position (cm) vs. time (s) is given by :
.....(1)
The general equation of oscillating particle is given by :
.......(2)
Compare equation (1) and (2) we get :

So, the angular frequency of the oscillation is 20 rad/s.
Answer:
0.832 m/s
Explanation:
The work done by the spring W equals the kinetic energy of the object K
The work done by the spring W = 1/2k(x₀² - x₁²) where k = spring constant, x₀ = initial compression = 0.065 m and x₁ = final compression = 0.032 m
The kinetic energy of the object, K = 1/2mv² where m = mass of object and v = speed of object
Since W = K,
1/2k(x₀² - x₁²) = 1/2mv²
k(x₀² - x₁²) = mv²
mv² = k(x₀² - x₁²)
v² = [(k/m)(x₀² - x₁²)]
taking square root of both sides, we have
v = √[(k/m)(x₀² - x₁²)] since ω = angular frequency = √(k/m),
v = √[(k/m)√(x₀² - x₁²)]
v = ω√(x₀² - x₁²)]
Since ω = 14.7 rad/s, we substitute the other variables into the equation, so we have
v = 14.7 rad/s × √((0.065 m)² - (0.032 m)²)]
v = 14.7 rad/s × √(0.004225 m² - 0.001024 m²)]
v = 14.7 rad/s × √(0.003201 m²)
v = 14.7 rad/s × 0.056577
v = 0.832 m/s