1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
topjm [15]
3 years ago
5

A circuit contains two 2,000 resistors connected in parallel. What is the total resistance of the circuit?

Physics
1 answer:
GenaCL600 [577]3 years ago
5 0
RT = R1 R2/ R1 + R2

R1 = R2 = 2k ohm

RT = R/2 = 2k/2 = 1k ohm 
You might be interested in
If you were on a ship at sea, and a tsunami passed under your ship, what would probably be your reaction? explain.
swat32
<span>Extremely powerful single waves have no effect on ships at sea since the depth of water allows the energy to be distributed over hundreds and thousands of feet. In deep water, the bigger the wave, the faster it moves and the slower the surface changes height. As the wave gets into shallow waters, it slows down and can start to pile up to large heights.</span>
6 0
3 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
What is the amplitude of a wave related to
Vanyuwa [196]

Answer:

intensity because square of the amplitude is proportional to the intensity of the wave

Explanation:

3 0
3 years ago
What happens to the gravitational force between two objects when their distance is changed?
kykrilka [37]
If they become closer, it is increased, and if the objects become farther away is decreased.
7 0
3 years ago
A solid conducting sphere of radius 2 cm has a charge of 8microCoulomb. A conducting spherical shell of inner radius 4 cm andout
nika2105 [10]

Answer:

C) 7.35*10⁶ N/C radially outward

Explanation:

  • If we apply the Gauss'law, to a spherical gaussian surface with radius r=7 cm, due to the symmetry, the electric field must be normal to the surface, and equal at all points along it.
  • So, we can write the following equation:

       E*A = \frac{Q_{enc} }{\epsilon_{0}} (1)

  • As the electric field must be zero inside the conducting spherical shell, this means that the charge enclosed by a spherical gaussian surface of a radius between 4 and 5 cm, must be zero too.
  • So, the +8 μC charge of  the solid conducting sphere of radius 2cm, must be compensated by an equal and opposite charge on the inner surface of the conducting shell of total charge -4 μC.
  • So, on the outer surface of the shell there must be a charge that be the difference between them:

        Q_{enc} = - 4e-6 C - (-8e-6 C) = + 4 e-6 C

  • Replacing in (1) A = 4*π*ε₀, and Qenc = +4 μC, we can find the value of E, as follows:

      E = \frac{1}{4*\pi*\epsilon_{0} } *\frac{Q_{enc} }{r^{2} } = \frac{9e9 N*m2/C2*4e-6C}{(0.07m)^{2} } = 7.35e6 N/C

  • As the charge that produces this electric field is positive, and the electric field has the same direction as the one taken by a positive test charge under the influence of this field, the direction of the field is radially outward, away from the positive charge.
6 0
3 years ago
Other questions:
  • VTheStampy is this right and what do I do next?
    9·1 answer
  • meg goes swimming on a hot afternoon. when she comes out of the pool, her foot senses that the pavement is unbearably hot. suppo
    9·1 answer
  • A taiga biome is DIFFERENT from a tundra biome because it has
    6·2 answers
  • Scientists believe that there are three genes that contribute to skin color in humans. Which of these best describes the inherit
    5·2 answers
  • when you hold a warm bowl of soup the temperature of the palms of your hands increases this is an example of
    7·1 answer
  • Apply a force of 50 N right to the box. Describe the motion of the box using physics terms (i.E. Velocity, acceleration, displac
    5·1 answer
  • Why does the midi system have the widest range of frequencies
    5·2 answers
  • Where do you find cations on the periodic table
    5·1 answer
  • A woman exerts a horizontal force of 113 N on a crate with a mass of 31.2 kg.
    6·1 answer
  • Which reaction is mainly responsible for the cause of energy radiation from the sun?​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!