Density
=mass÷volume
=277÷38
=7.29 g/cm3
No, why? Cause if you're winding up the clock it's basically doing what it needs to do. So there's no need for batteries.. I hope my sad sentence make sense :p
Explanation:
The weak intermolecular forces which can arise either between nucleus and electrons or between electron-electron are known as dispersion forces. These forces are also known as London dispersion forces and these are temporary in nature.
Therefore, more is the surface area occupied by the carbon chain more will be the dispersion forces present in it. Hence, less is the surface area occupied by a molecule less will be the dispersion forces present in it.
Hence, the given molecules are organized from largest to smallest dispersion forces as follows.
>
>
>
>
> 
Answer:
Very toxic materials are substances that may cause significant harm or even death to an individual if even very small amounts enter the body.There are a number of very toxic materials that may be used in workplaces. Some examples include carbon monoxide, hydrogen sulfide, chlorine and sodium cyanide
Explanation:
here are generally four types of toxic entities; chemical, biological, physical and radiation: Chemical toxicants include inorganic substances such as, lead, mercury, hydrofluoric acid, and chlorine gas, and organic compounds such as methyl alcohol, most medications, and toxins.
A positive cahnge of enthalpy, ΔH rxn = + 55 kJ/mol, for the forward reaction means that the reaction is endothermic, i.e. the reactants absorb energy and the products are higher in energy.
Activation energy is the difference in the energy level of the reactants and the peak in the potential energy diagram (the energy of the transition state).
For an endothermic reaction, the products will be closer in energy to the transition state than what the reactans will be; so, the activation energy of the reversed reaction is lower than the activation energy of the forward reaction.
Activation energy of reverse and forward reactions is related by:
Activation energy of reverse rxn = Activation energy of forward rxn - ΔH rxn
=> Activiation energy of reverse rxn = 102 kJ/mol - 55 kJ/mol = 47 kJ/mol
Answer: 47 kJ/mol