1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lyrx [107]
3 years ago
6

The guy wires AB and AC are attached to the top of the transmission tower. The tension in cable AB is 9.1 kN. Determine the requ

ired tension T in cable AC such that the net effect of the two cables is a downward force at point A. Determine the magnitude R of this downward force.
Physics
1 answer:
Oksana_A [137]3 years ago
7 0

Answer:

 T_ac = 6.586 KN

R = 10.51 KN

Explanation:

Given:

- Tension in cable T_ab = 9.1 KN

Find:

- Determine the required tension T in cable AC such that the net effect of the two cables is a downward force at point A

- Determine the magnitude R of this downward force.

Solution:

- Compute the three angles as shown in figure attached, a, B , y:

                                 a = arctan (40/50) = 38.36 degrees

                                 B = arctan (50/30) = 59.04 degrees

                                 y = 180 - 38.36 = 82.6 degrees

- Use cosine rule to calculate R and F_ac as follows:

                                 sin(a) / T_ac = sin(B) / T_ab = sin(y) / R

                                 sin(38.36) / T_ac = sin(59.04) / 9.1 = sin(82.06) / R

                                 T_ac = 9.1 * ( sin(38.36) / sin(59.04) )

                                T_ac = 6.586 KN

                                 R = 9.1 * ( sin(82.06) / sin(59.04) )

                                 R = 10.51 KN

You might be interested in
What is an equilibrant?
Stolb23 [73]
I’m pretty sure it is an object with a net force of zero. All forces are balanced and EQUAL
4 0
3 years ago
How much energy is consumed by a 12 W night light left on for 10 hr?
shutvik [7]

Answer:

Energy consumed is 0.00033 Joules.

Explanation:

the formula of Energy is:

Energy = power/ time.

6 0
3 years ago
a person dives off the edge of aa cliff 33m above the surface of the sea. assuming that air resistance is negligible, how long d
USPshnik [31]

Answer:

The time is t = 2.595 \  s

The speed is v = 25.43 \ m/s

Explanation:

From the question we are told that

    The height of the cliff is  h =  33 \  m

 Generally from kinematic equation we have that

       h  =  ut + \frac{1}{2} gt^2

before the jump the persons initial velocity is  u =  0 m/s

 So

        33   =  0 * t + \frac{1}{2} 9.8 * t^2

=>      t = 2.595 \  s

Generally from kinematic equation

     v= u + gt

=>  v= 0 + 9.8 * 2.595

=>  v = 25.43 \ m/s

3 0
3 years ago
A square plate of side 9 m is submerged in water at an incline of 60∘ with the horizontal. Its top edge is located at the surfac
Tpy6a [65]

Answer:

The force on one side of  the plate is 3093529.3 N.

Explanation:

Given that,

Side of square plate = 9 m

Angle = 60°

Water weight density = 9800 N/m³

Length of small strip is

y=\dfrac{\Delta y}{\sin60}

y=\dfrac{2\Delta y}{\sqrt{3}}

The area of strip is

dA=\dfrac{9\times2\Delta y}{\sqrt{3}}

We need to calculate the force on  one side of  the plate

Using formula of pressure

P=\dfrac{dF}{dA}

dF=P\times dA

On integrating

\int{dF}=\int_{0}^{9\sin60}{\rho g\times y\times 6\sqrt{3}dy}

F=9800\times6\sqrt{3}(\dfrac{y^2}{2})_{0}^{9\sin60}

F=9800\times6\sqrt{3}\times(\dfrac{(9\sin60)^2}{2})

F=3093529.3\ N

Hence, The force on one side of  the plate is 3093529.3 N.

7 0
3 years ago
Compare the circular velocity of a particle orbiting in the Encke Division, whose distance from Saturn 133,370 km, to a particle
Ket [755]

Answer:

The particle in the D ring is 1399 times faster than the particle in the Encke Division.

Explanation:

The circular velocity is define as:

v = \frac{2 \pi r}{T}  

Where r is the radius of the trajectory and T is the orbital period

To determine the circular velocity of both particles it is necessary to know the orbital period of each one. That can be done by means of the Kepler’s third law:

T^{2} = r^{3}

Where T is orbital period and r is the radius of the trajectory.

Case for the particle in the Encke Division:

T^{2} = r^{3}

T = \sqrt{(133370 Km)^{3}}

T = \sqrt{(2.372x10^{15} Km)}

T = 4.870x10^{7} Km

It is necessary to pass from kilometers to astronomical unit (AU), where 1 AU is equivalent to 150.000.000 Km ( 1.50x10^{8} Km )

1 AU is defined as the distance between the earth and the sun.

\frac{4.870x10^{7} Km}{1.50x10^{8}Km} . 1AU

T = 0.324 AU

But 1 year is equivalent to 1 AU according with Kepler’s third law, since 1 year is the orbital period of the earth.

T = \frac{0.324 AU}{1 AU} . 1 year

T = 0.324 year

That can be expressed in units of days

T = \frac{0.324 year}{1 year} . 365.25 days  

T = 118.60 days

<em>Circular velocity for the particle in the </em><em>Encke Division</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (133370 Km)}{(118.60 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

118.60 days .\frac{86400 s}{1 day} ⇒ 10247040 s

133370 Km .\frac{1000 m}{1 Km} ⇒ 133370000 m

v = \frac{2 \pi (133370000 m)}{(10247040 s)}

v = 81.778 m/s

Case for the particle in the D Ring:

For the case of the particle in the D Ring, the same approach used above can be followed

T^{2} = r^{3}

T = \sqrt{(69000 Km)^{3}}

T = \sqrt{(3.285x10^{14} Km)}

T = 1.812x10^{7} Km

\frac{1.812x10^{7} Km}{1.50x10^{8}Km} . 1 AU

T = 0.120 AU

T = \frac{0.120 AU}{1 AU} . 1 year

T = 0.120 year

T = \frac{0.120 year}{1 year} . 365.25 days  

T = 43.83 days

<em>Circular velocity for the particle in </em><em>D Ring</em><em>:</em>

v = \frac{2 \pi r}{T}

v = \frac{2 \pi (69000 Km)}{(43.83 days)}

For a better representation of the velocity, kilometers and days are changed to meters and seconds respectively.

43.83 days . \frac{86400 s}{1 day} ⇒ 3786912 s

69000 Km . \frac{1000 m}{ 1 Km} ⇒ 69000000 m

v = \frac{2 \pi (69000000 m)}{(3786912 s)}

v = 114.483 m/s

 

\frac{114.483 m/s}{81.778 m/s} = 1.399            

The particle in the D ring is 1399 times faster than the particle in the Encke Division.  

7 0
3 years ago
Other questions:
  • What happens in a tug of war if the net forces are balanced and why?
    15·1 answer
  • Which of these components is present in this circuit schematic?
    5·2 answers
  • Two cars drive on a straight highway. At time t=0, car 1 passes mile marker 0 traveling due east with a speed of 20.0 m/s. At th
    10·1 answer
  • A body moving at .500c with respect to an observer
    10·1 answer
  • An electron is accelerated within a particle accelerator using a 100 MV electric potential. The 100 MeV electron moves along an
    11·1 answer
  • According to relativity theory, if a space trip finds a son or daughter biologically older than his or her parents, then the spa
    9·1 answer
  • The earth's magnetic fleld extends:
    12·2 answers
  • * THE ANSWER IS D * Silicon (chemical symbol Si) is located in Group 14, Period 3. Which is silicon most likely
    7·2 answers
  • A 0.145 kg ball moving in the +x direction at 14 m/s is hit by a bat. The ball's final velocity is 20.0 m/s in the -x direction.
    8·1 answer
  • To determine whether a celestial body is approaching or receding from earth, astronomers employ?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!