I recently did this topic in science class - the answer is A ;)
Answer:
The answer is "
"
Explanation:
Z=2, so the equation is 
Calculate the value for E when:
n=2 and n=9
The energy is the difference in transformation, name the energy delta E Deduct these two energies
In this transition, the wavelength of the photon emitted is:



I would say A. because during the solar eclipse you cannot see the suns Photosphere at all, and the corona is the light that emits around the moon during the eclipse.
The force needed to the stop the car is -3.79 N.
Explanation:
The force required to stop the car should have equal magnitude as the force required to move the car but in opposite direction. This is in accordance with the Newton's third law of motion. Since, in the present problem, we know the kinetic energy and velocity of the moving car, we can determine the mass of the car from these two parameters.
So, here v = 30 m/s and k.E. = 3.6 × 10⁵ J, then mass will be

Now, we know that the work done by the brake to stop the car will be equal to the product of force to stop the car with the distance travelled by the car on applying the brake.Here it is said that the car travels 95 m after the brake has been applied. So with the help of work energy theorem,
Work done = Final kinetic energy - Initial kinetic energy
Work done = Force × Displacement
So, Force × Displacement = Final kinetic energy - Initial Kinetic energy.

Thus, the force needed to the stop the car is -3.79 N.
Answer:
42.3 MV
Explanation:
d = diameter of the metal sphere = 2.15 m
r = radius of the metal sphere
diameter of the metal sphere is given as
d = 2r
2.15 = 2 r
r = 1.075 m
Q = charge on sphere = 5.05 mC = 5.05 x 10⁻³ C
Potential near the surface is given as


V = 4.23 x 10⁷ volts
V = 42.3 MV