When the forces acting on a body are balanced, their effect
\on the body's motion is the same as if no forces at all are
acting on it, and its velocity can't change. It continues moving
in a straight line at constant speed (which may be zero).
Answer:
The magnitude and direction of the resultant force are approximately 599.923 newtons and 36.405°.
Explanation:
First, we must calculate the resultant force (
), in newtons, by vectorial sum:
(1)
Second, we calculate the magnitude of the resultant force by Pythagorean Theorem:


Let suppose that direction of the resultant force is an standard angle. According to (1), the resultant force is set in the first quadrant:

Where
is the direction of the resultant force, in sexagesimal degrees.

The magnitude and direction of the resultant force are approximately 599.923 newtons and 36.405°.
Answer:
165.529454
Explanation:
According to the Pythagorean Theorem for calculating the lengths of a right angle triangle's sides, a^2 + b+2 = c^2, where c is the longest side (and the side opposing the right angle). So in your case it would be 150*150 + 70*70 = 27400. And √ 27400 is your answer.
Answer:
(iv), (v), (vi) would be incorrect.
Explanation:
(iv) Force isn't transferred from one colliding object to another, but momentum can be.
(v) An object doesn't stop immediately a force stops acting on it. Think of a thrown ball.
(vi) For an object not to move, it means that the net force on the object is zero, and not necessarily that there are no forces acting on the object. For example, an object could be pushed on one side, and be pushed on the other side with an equal force in the opposite direction. The forces would cancel each other and the net force would be zero.
The rest should be correct.
I think true. I'm pretty sure, but check w/ others too.