The answer is true because A current carrying wire is surrounded by magnetic field
Answer: 
Explanation:
Given
Intensity must be reduced by a factor of 6
Intensity is given by 
Substitute
by 

So, the disk must be rotated by an angle of
.
Answer:
the magnitude of the total angular momentum of the blades is <em>743.71 kg·m²</em>
Explanation:
Converting the angular speed into radians per second:
ω = 334 rpm · (2π rad / 1 rev) · (1 min / 60 s)
ω = 34.98 rad/s
The rotational kinetic energy of the blades is given by:
EK = 1/2 I ω²
where
- I is the moment of inertia
- ω is the angular speed
Therefore, rearranging the above equation, we get:
1/2 I ω² = EK
I ω² = 2 EK
I = 2(EK) / ω²
I = 2(4.55 × 10⁵ J) / (34.98 rad/s)²
<em>I = 743.71 kg·m²</em>
<em></em>
Therefore, the magnitude of the total angular momentum of the blades is <em>743.71 kg·m²</em>.
7) p=w/t
2620/0.2
=13100W
8) W=pt
40*30
=1200 J
9) transformed