Answer:

Explanation:
Given
Mass = 10kg
Velocity = 2m/s
Required
Calculate the momentum of the man
Momentum is calculated as thus
or

So; to solve this question; we simply substitute 10kg for mass and 2m/s for velocity in the above formula;
The formula becomes



Hence, the momentum of the man is 
As we know the formula of kinetic energy is

here given that
KE = 150,000 J
mass = 120 kg
we can use this to find speed



So speed of above object is 50 m/s
We anticipate a constant Poynting vector of magnitude since the hot resistor will be emitting heat and none of the electric or magnetic fields will change over time.
S = P/A
= I2R/ 2πrL
= 332 kW/m2
Always pointing away from the wire, this Poynting vector.
<h3>What is the Poynting vector?</h3>
Describes the size and direction of the energy flow in electromagnetic waves using a Poynting vector. It bears the name of the 1884 invention of English physicist John Henry Poynting. It stands for the electromagnetic field's directional energy flux or power flow. The Poynting vector is significant in a static electromagnetic field because it determines the direction of energy flow in an electromagnetic field. This vector represents the radiation pressure of an electromagnetic wave and points in its direction of propagation.
To learn more about Poynting vector, visit:
<u>brainly.com/question/17330899</u>
#SPJ4
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1