It is through biopsychological feedback.
A class of chemical called a neurotransmitter is important in the transmission of nerve impulses. Neurotransmitters are packaged by the cell into small, membrane-bound sacs called vesicles. Upon receiving a chemical signal, the vesicles move toward the cell membrane and fuse with it, releasing the enclosed neurotransmitters from the terminal end of the nerve cell.
Answer:
6.53 m/s²
Explanation:
Let m₁ = 5 kg and m₂ = 10 kg. The figure is attached and free body diagrams of the objects are also attached.
Both objects (m₁ and m₂) have the same magnitude of acceleration(a). Let g be the acceleration due to gravity = 9.8 m/s². Hence:
T = m₁a (1)
m₂g - T = m₂a (2)
substituting T = m₁a in equation 2:
m₂g - m₁a = m₂a
m₂a + m₁a = m₂g
a(m₁ + m₂) = m₂g
a = m₂g / (m₁ + m₂)
a = (10 kg * 9.8 m/s²) / (10 kg + 5 kg) = 6.53 m/s²
Both objects have an acceleration of 6.53 m/s²
Answer:
1.8 m/s
Explanation:
momentum = mass × velocity
initial momentum = m1v1+m2v2
= 3×3 +2×0 = 9+0= 9 kg m/s
let combined velocity be V
HENCE
final momentum = total mass × velocity
= (3+2) × V = 5V
According to law of conservation of momentum
final momentum = initial momentum
5V = 9
V =9/5
V = 1.8 m/s
Acceleration = (change in speed)/(time for the change)
Change in speed = (end speed) - (start speed)
Change in speed = (10 m/s) - (20 m/s) = -10 m/s
Time for the change = 5.00 seconds
Acceleration = (-10 m/s) / (5 sec)
<em>Acceleration = -2 m/s²</em>
That's choice-A .