The first thing you should do is develop a <u>budget</u> to determine what vehicle you can afford.
<h3>What is an automobile?</h3>
An automobile is also referred to as a vehicle, car or motorcar and it can be defined as a four-wheeled vehicle that is designed and developed to be propelled by an internal-combustion (gasoline) engine, especially for the purpose of transportation from one location to another.
<h3>What is a budget?</h3>
A budget can be defined as a financial plan that is typically used for the estimation of revenue and expenditures of an individual, business organization or government for a specified period of time, often one year.
In this context, we can reasonably infer and logically deduce that the first thing anyone should do is to develop a <u>budget</u> in order to determine what vehicle they can afford.
Read more on budget here: brainly.com/question/13964173
#SPJ1
Answer:
(b) Constant (minimum) volume
Explanation:
In the idealized Otto cycle there are 4 process that are
- Reversible adiabatic compression
- Addition of heat at constant volume
- Reversible adiabatic expansion
- Rejection of constant volume
So from above discussion we can see that heat is added when there is constant (minimum) volume which is given in option (b) so option (b) will be the correct answer
Answer:
The Purpose of Refrigeration. The fundamental reason for having a refrigerator is to keep food cold. Cold temperatures help food stay fresh longer. The basic idea behind refrigeration is to slow down the activity of bacteria (which all food contains) so that it takes longer for the bacteria to spoil the food.
Explanation:
Answer:
Explanation:
effective delay = delay when no traffic x 
effective delay = 
Answer:
the rate of heat loss from the steam turbine is Q = 200 kW
Explanation:
From the first law of thermodynamics applied to open systems
Q-W₀ = F*(ΔH + ΔK + ΔV)
where
Q= heat loss
W₀= power generated by the turbine
F= mass flow
ΔH = enthalpy change
ΔK = kinetic energy change
ΔV = potencial energy change
If we neglect the changes in potential and kinetic energy compared with the change in enthalpy , then
Q-W₀ = F*ΔH
Q = F*ΔH+ W₀
replacing values
Q = F*ΔH+ W₀ = 420 kg/min * (-600 kJ/kg) * 1 min/60 s * 1 MW/1000 kW + 4 MW = -0.2 MW = -200 kW (negative sign comes from outflow of energy)