Answer: Option D) 298 g/mol is the correct answer
Explanation:
Given that;
Mass of sample m = 13.7 g
pressure P = 2.01 atm
Volume V = 0.750 L
Temperature T = 399 K
Now taking a look at the ideal gas equation
PV = nRT
we solve for n
n = PV/RT
now we substitute
n = (2.01 atm x 0.750 L) / (0.0821 L-atm/mol-K x 399 K
)
= 1.5075 / 32.7579
= 0.04601 mol
we know that
molar mass of the compound = mass / moles
so
Molar Mass = 13.7 g / 0.04601 mol
= 297.7 g/mol ≈ 298 g/mol
Therefore Option D) 298 g/mol is the correct answer
Answer:
a) 0.487
b) refrigeration load = 5.46w
c) cop = 2.24
d)ref load max = 12.43kw
Explanation:
Answer:
Check the explanation
Explanation:
The loop invariant has to satisfy some amount of requirements to be of good use. Another complex factor as to why a loop is the question of loop termination. A loop that doesn’t terminate can’t invariably be correct, and in fact the computation in whatever form amounts to nothing. The total axiomatic description of a while construct will have to involve all of the following to be true, in which I is the loop invariant:
P => I
{I and B} S {I}
(I and (not B)) => Q
Then the loop terminates
Answer with Explanation:
Part a)
The volume of water in the tank as a function of time is plotted in the below attached figure.
The vertical intercept of the graph is 46.
Part b)
The vertical intercept represents the volume of water that is initially present in the tank before draining begins.
Part c)
To find the time required to completely drain the tank we calculate the volume of the water in the tank to zero.

Part d)
The horizontal intercept represents the time it takes to empty the tank which as calculated above is 13.143 minutes.
Follow @richard.gbe on Instagram for the answer