Answer:
Explanation:
If a be grating element
a = 1 x 10⁻² / 11000
= .0909 x 10⁻⁵
= 909 x 10⁻⁹ m
for first order maxima , the condition is
a sinθ = λ where λ is wavelength
909 x 10⁻⁹ sin 49.67 = λ₁
λ₁ = 692.95 nm .
λ₂ = 909 x 10⁻⁹ sin 50.65
= 702.91 nm
λ₃ = 909 x 10⁻⁹ sin 52.06
= 716.88 nm
λ₄ = 909 x 10⁻⁹ sin 52.89
= 724.90 nm
692.95 nm , 702.91 nm , 716.88 nm , 724.90 nm .
The purpose of the machine is to leverage its mechanical advantage such that the force it outputs to move the heavy object is greater than the force required for you to input.
But there's no such thing as a free lunch! When you apply the conservation of energy, the work the machine does on the object will always be equal to (in an ideal machine) or less than the work you input to the machine.
This means that you will apply a lesser force for a longer distance so that the machine can supply a greater force on the object to push it a smaller distance. That is the trade-off of using the machine: it enables you to use a smaller force but at the cost of having to apply that smaller force for a greater distance.
The answer is: The work input required will equal the work output.
, to hit nails into a piece of wood or a wall, or to break things into pieces.
Answer:
Kinematics is the study of motion.