Answer:
Option D - 0.2 s
Explanation:
We are given;
Initial velocity; u = 7 m/s
Height of table; h = 1.8m
Now,since we want to find the time the car spent in the air, we will simply use one of Newton's equation of motion.
Thus;
h = ut + ½gt²
Plugging in the relevant values, we have;
1.8 = 7t + ½(9.8)t²
4.9t² + 7t - 1.8 = 0
Using quadratic formula to find the roots of the equation gives us;
t = -1.65 or 0.22
We can't have negative t value, thus we will pick the positive one.
So, t = 0.22 s
This is approximately 0.2 s
The cat has two directions of motions:
The horizontal motion = Dx = 2.2 m
The vertical motion = Dy = -1.3 m (negative sign indicates that the cat is falling)
a = 9.8 m/sec^2
Vy = zero (since you are not moving up)
From the laws of motion:
<span>Dy = Vyt + 0.5ayt^2
</span>-1.3 = 0(t) + 0.5(-9.8)t^2
<span>t = 0.52s
</span>
Then, again using the laws of motion (but for the horizontal direction this time)
Dx = Vxt
<span>2.2 = Vx0.52 </span>
<span>Vx = 2.2/0.52 </span>
<span>= 4.23 m/s
</span>
<span>Therefore the cat's speed when it slid off the table is 4.23 m/s horizontally.</span>
Land: Tectonic plate movement under the Earth can create landforms by pushing up mountains and hills. Erosion by water and wind can wear down land and create landforms like valleys and canyons. ... Landforms can exist under water in the form of mountain ranges and basins under the sea.
Atmosphere: (4.6 billion years ago)
As Earth cooled, an atmosphere formed mainly from gases spewed from volcanoes. It included hydrogen sulfide, methane, and ten to 200 times as much carbon dioxide as today's atmosphere. After about half a billion years, Earth's surface cooled and solidified enough for water to collect on it.
Ocean: After the Earth's surface had cooled to a temperature below the boiling point of water, rain began to fall—and continued to fall for centuries. As the water drained into the great hollows in the Earth's surface, the primeval ocean came into existence. The forces of gravity prevented the water from leaving the planet.
In a closed system, the loss of momentum of one object is same as________ the gain in momentum of another object
according to law of conservation of momentum, total momentum before and after collision in a closed system in absence of any net external force, remains conserved . that is
total momentum before collision = total momentum after collision
P₁ + P₂ = P'₁ + P'₂
where P₁ and P₂ are momentum before collision for object 1 and object 2 respectively.
P'₁ - P₁ = - (P'₂ - P₂)
so clearly gain in momentum of one object is same as the loss of momentum of other object
Kinetic, thermal and electrical. There is more then one form of energy