Answer:fission
Explanation:
All nuclear power plants rely on fission to generate power
Answer:
<em>Connecting the 4-ohm and 12-ohm in parallel and followed by the 3-ohm resistor in series. A scheme of the configuration is attached below. Please see the file attached below to know the diagram.</em>
Explanation:
There is the following solution that satisfies all requirements indicated on statement:
<em>Connecting the 4-ohm and 12-ohm in parallel and followed by the 3-ohm resistor in series. A scheme of the configuration is attached below.</em>


Which observes all design requirements.
Answer:
352,088.37888Joules
Explanation:
Complete question;
A hiker of mass 53 kg is going to climb a mountain with elevation 2,574 ft.
A) If the hiker starts climbing at an elevation of 350 ft., what will their change in gravitational potential energy be, in joules, once they reach the top? (Assume the zero of gravitational potential is at sea level)
Chane in potential energy is expressed as;
ΔGPH = mgΔH
m is the mass of the hiker
g is the acceleration due to gravity;
ΔH is the change in height
Given
m = 53kg
g = 9.8m/s²
ΔH = 2574-350 = 2224ft
since 1ft = 0.3048m
2224ft = (2224*0.3048)m = 677.8752m
Required
Gravitational potential energy
Substitute the values into the formula;
ΔGPH = mgΔH
ΔGPH = 53(9.8)(677.8752)
ΔGPH = 352,088.37888Joules
Hence the gravitational potential energy is 352,088.37888Joules
Answer:
S = 11.025 m
Explanation:
Given,
The time taken by the pebble to hit the water surface is, t = 1.5 s
Acceleration due to gravity, g = 9.8 m/s²
Using the II equations of motion
S = ut + 1/2 gt²
Here u is the initial velocity of the pebble. Since it is free-fall, the initial velocity
u = 0
Therefore, the equation becomes
S = 1/2 gt²
Substituting the given values in the above equation
S = 0.5 x 9.8 x 1.5²
= 11.025 m
Hence, the distance from the edge of the well to the water's surface is, S = 11.025 m