Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
Answer:
Explanation:
There will be reaction force by each vertical post on horizontal plank . Let it be R₁ and R₂ . R₁ is reaction force by the post nearer to woman
Taking torque of all forces about the end far away from the woman
Torque by reaction force = R₁ x 5.5
= 5.5 R₁ upwards
Torque by weight of woman in opposite direction , downwards
= - 804 x ( 5.5 - 1.55 )
= - 3175.8
Torque by weight of the plank in opposite direction , downwards .
= - 27 x 5.5 / 2
= - 74.25
Torque by R₂ will be zero as it passes through the point about which torque is being taken .
Total torque
= 5.5 R₁ - - 3175.8 - - 74.25 = 0 ( For equilibrium )
5.5 R₁ = 3250
R₁ = 590.9 N .
Answer:
Explanation:
Use the one-dimensional equation:
which says that the final velocity of a falling object is equal to its initial velocity times the acceleration of gravity times the time it takes to fall. We have the final velocity, -14.5 (negative because its direction is down and down is negative), initial velocity is 0 (because it was held still by someone before it was dropped), and acceleration is -9.8 (negative again, because direction is down while acceleration increases). Filling in:
-14.5 = 0 - 9.8t and
-14.5 = -9.8t so
t = 1.5 seconds
Answer:
1848.15J
Explanation:
KE =1/2 mv^2
Mass = 60kg, velocity =40km/h =11.11m/s
Hence
KE =30 x(11.1)^2 /2 = 1848.15J