Answer:
A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Explanation:
The bulk modulus is represented by the following differential equation:

Where:
- Bulk module, measured in pascals.
- Sample volume, measured in cubic meters.
- Local pressure, measured in pascals.
Now, let suppose that bulk remains constant, so that differential equation can be reduced into a first-order linear non-homogeneous differential equation with separable variables:

This resultant expression is solved by definite integration and algebraic handling:




The final volume is predicted by:

If
,
and
, then:


Change in volume due to increasure on pressure is:



A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.
Answer:
α = - 1.883 rev/min²
Explanation:
Given
ωin = 113 rev/min
ωfin = 0 rev/min
t = 1.0 h = 60 min
α = ?
we can use the following equation
ωfin = ωin + α*t ⇒ α = (ωfin - ωin) / t
⇒ α = (0 rev/min - 113 rev/min) / (60 min)
⇒ α = - 1.883 rev/min²