The time the package travels horizontally is equal to the time it takes to hit the ground. This can be calculated using:
s = ut + 1/2 at²; u is 0
480 = 4.9t²
t = 9.90 seconds
Horizontal distance = horizontal speed x time
The speed will be converted to m/s from km/h
= 180 km/hr x 1000m/km x 1hr/3600 seconds x 9.90 seconds
= 495 m
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>
Answer:
The period of the wave does not change looting the value that accompanies the time, the wavelength does not change since it is the constant that accompanies x.
We see that the amplitude is twice the amplitude of the incident waves. Since the wave is stationary the velocity is zero
Explanation:
In this exercise we are given the equation of two traveling waves, it is asked to find the resulting wave
u = f + g
u = 2 sin (x + t) + 2 sin (x-t)
we will develop double angled breasts
u = 2 [(sin x cos t + sin t cos x) + (sin x cos t - sin t cos x)]
u = 2 [2 sin x cos t]
u = 4 sin x cos t
The period of the wave does not change looting the value that accompanies the time, the wavelength does not change since it is the constant that accompanies x.
We see that the amplitude is twice the amplitude of the incident waves. Since the wave is stationary the velocity is zero
When 1 carbon atom combines with 2 oxygen atoms, the resulting substance is carbon dioxide which is a Compound. Hope this helps.
Savannah (:
Answer:
A ratio is a way to compare quantities of things.
Explanation:
by dividing the number of moles of each by the smallest number of moles.