The answer is C (the same number of valence electrons)
Answer:
4.2s
Explanation:
Given parameters:
Power = 2190W
Mass of box = 1.47 x 10⁴g
distance = 6.34 x 10⁴mm
Unknown:
Time = ?
Solution:
Power is the rate at which work is done;
Mathematically;
Power =
Time =
Work done = weight x height
convert mass to kg;
100g = 1kg;
1.47 x 10⁴g = 14.7kg
convert the height to m;
1000mm = 1m
6.34 x 10⁴mm gives 63.4m
Work done = 14.7 x 9.8 x 63.4 = 9133.4J
Time taken =
= 4.2s
Force = mass * acceleration = 1500kg * 8m/s²
The answer is "Three".
At the point when individuals take studies for factual purposes or when the Statistics Agency comes around and gets everyone's data, data from one individual is one information point for them. Toward the finish of its exploration or overview, the organization will have accumulated numerous bits of data from numerous individuals. One piece of information equals with one data point.
The electric field is always perpendicular to the surface outside of a conductor. TRUE
<span> If an electron were placed on an electric field line, it would move in a direction perpendicular to the field. FALSE, it would move in an anti-parallel direction because its charge is negative </span>
<span>Electric field lines originate on positive charge and terminate on negative charge. TRUE ; but they can also go to infinity </span>
It is possible for two electric field lines to cross each other.
<span> Usually FALSE; though technically possible at special points where field is zero. </span>
If an electron and a positron were in the presence of a very strong electric field, they would move away from each other.
<span> TRUE; one is positive, and one is negative. If the field is strong enough, the action of the field will overcome the mutual attraction between them </span>
It is not possible for the electric field to ever be zero. FALSE: it IS possible, inside a conductor for instance
If a proton were placed on an electric field line, it would move in a direction anti-parallel to the field.
<span> FALSE: being positive, it would move in the SAME direction as the field</span>ic