1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_lady [41]
2 years ago
15

During the middle of a family picnic, Barry Allen received a message that his friends Bruce and Hal

Physics
1 answer:
weeeeeb [17]2 years ago
4 0

The kinematics of the uniform motion and the addition of vectors allow finding the results are:

  • The  Barry's initial trajectory is 94.30 10³ m with n angles of θ = 138.8º
  • The return trajectory and speed are v = 785.9 m / s, with an angle of 41.2º to the South of the East

Vectors are quantities that have modulus and direction, so they must be added using vector algebra.

A simple method to perform this addition in the algebraic method which has several parts:

  • Vectors are decomposed into a coordinate system
  • The components are added
  • The resulting vector is constructed

 Indicate that Barry's velocity is constant, let's find using the uniform motion thatthe distance traveled in ad case

              v = \frac{\Delta d}{t}

              Δd = v t

Where  v is the average velocity, Δd the displacement and t the time

We look for the first distance traveled at speed v₁ = 600 m / s for a time

          t₁ = 2 min = 120 s

          Δd₁ = v₁ t₁

          Δd₁ = 600 120

          Δd₁ = 72 10³ m

Now we look for the second distance traveled for the velocity v₂ = 400 m/s    

  time t₂ = 1 min = 60 s

          Δd₂ = v₂ t₂

          Δd₂ = 400 60

          Δd₂ = 24 103 m

   

In the attached we can see a diagram of the different Barry trajectories and the coordinate system for the decomposition,

We must be careful all the angles must be measured counterclockwise from the positive side of the axis ax (East)

Let's use trigonometry for each distance

Route 1

          cos (180 -35) = \frac{x_1}{\Delta d_1}

          sin 145 = \frac{y_1}{\Delta d1}

          x₁ = Δd₁ cos 125

          y₁ = Δd₁ sin 125

          x₁ = 72 103 are 145 = -58.98 103 m

          y₁ = 72 103 sin 155 = 41.30 10³ m

Route 2

          cos (90+ 30) = \frac{x_2}{\Delta d_2}

          sin (120) = \frac{y_2}{\Delta d_2}

          x₂ = Δd₂ cos 120

          y₂ = Δd₂ sin 120

          x₂ = 24 103 cos 120 = -12 10³ m

           y₂ = 24 103 sin 120 = 20,78 10³ m

             

The component of the resultant vector are

              Rₓ = x₁ + x₂

              R_y = y₁ + y₂

              Rx = - (58.98 + 12) 10³ = -70.98 10³ m

              Ry = (41.30 + 20.78) 10³ m = 62.08 10³ m

We construct the resulting vector

Let's use the Pythagoras' Theorem for the module

             R = \sqrt{R_x^2 +R_y^2}

             R = \sqrt{70.98^2 + 62.08^2}   10³

             R = 94.30 10³ m

We use trigonometry for the angle

             tan θ ’= \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{62.08}{70.98}

             θ ’= 41.2º

Since the offset in the x axis is negative and the displacement in the y axis is positive, this vector is in the second quadrant, to be written with respect to the positive side of the x axis in a counterclockwise direction

            θ = 180 - θ'

            θ = 180 -41.2

            θ = 138.8º

Finally, let's calculate the speed for the way back, since the total of the trajectory must be 5 min and on the outward trip I spend 3 min, for the return there is a time of t₃ = 2 min = 120 s.

The average speed of the trip should be

             v = \frac{\Delta R}{t_3}  

             v = \frac{94.30}{120}  \ 10^3

              v = 785.9 m / s

in the opposite direction, that is, the angle must be

               41.2º to the South of the East

In conclusion, using the kinematics of the uniform motion and the addition of vectors, results are:

  • To find the initial Barry trajectory is 94.30 10³ m with n angles of  138.8º
  • The return trajectory and speed is v = 785.9 m / s, with an angle of 41.2º to the South of the East

Learn more here:  brainly.com/question/15074838

You might be interested in
(II) You buy a 75-W lightbulb in Europe, where electricity is delivered at 240 V. If you use the bulb in the United States at 12
Elodia [21]

Answer:

Explanation:

You are looking for the resistance to start with

W = E * E/R

75 = 240 * 240 / R

75 * R = 240 * 240

R = 240 * 240 / 75

R = 57600 / 75

R = 768

Now let's see what happens when you try putting this into 110

W = E^2 / R

W = 120^2 / 768

W = 18.75

So the wattage is rated at 75. 18.75 is a far cry from that. I think they intend you to set up a ratio of

18.75 / 75 = 0.25

This is the long sure way of solving it. The quick way is to realize that the voltage is the only thing that is going to change. 120 * 120 / (240 * 240) = 1/2*1/2 = 1/4 = 0.25

4 0
2 years ago
A circuit is made of a battery, a light bulb, and a 2 resistor. The battery has a voltage of 3 volts. When connected, the ammete
Monica [59]

Answer:

3ohms

Explanation:

From Ohm's Law

V = IR

V is that voltage = 3volts

I = current = 1amp

R = resistance in ohms

Putting those values into the above formula.

3volts = 1amp×R

Making R the subject

R = 3/1

R = 3ohms

The resistance of the light bulb is 3ohms.

6 0
3 years ago
A manufacturer claims its cleanser works twice as fast as any other. Could test be performed to support the claim? Explain
lora16 [44]

Yes, a test could be performed to support the claim.

 

Hypothesis: The claim that a manufacturer’s cleanser works twice as fast as any other cleanser.

 

So, based from this hypothesis, we can perform the following tests:

We assign Cleanser A to the manufacturer that claims that their cleanser works twice as fast as any other cleanser and Cleanser B to the cleanser to be compared with.

 

1.       Get two tiles and put the same amount of stain on them.

2.       Apply Cleanser A on the first tile and Cleanser B on the second tile.

3.       Apply the same amount of force in removing the stains on both tiles

4.       Record the amount of time it takes to remove the stains on each tile.

4 0
3 years ago
An 89 kg man drops from rest on a diving board −3.1 m above the surface of the water and comes to rest 0.5 s after reaching the
OLga [1]

To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,

m= 89 kg\\x = 3.1 m\\t = 0.5s\\a = g = 9.8m/s^2

Through the aforementioned formula we will have to

v_f^2-v_i^2 = 2ax

The particulate part of the rest, so the final speed would be

v_f^2 = 2gx

v_f=\sqrt{2(9.8)(3.1)}

v_f = 7.79m/s

Now from Newton's second law we know that

F = ma

Here,

m = mass

a = acceleration, which can also be written as a function of velocity and time, then

F = m\frac{dv}{dt}

Replacing we have that,

F = (89)\frac{7.79}{0.5}

F = 1386.62N

Therefore the force that the water exert on the man is 1386.62

3 0
3 years ago
Does the sun make Gamma rays?<br>what gives Infrared light?
Gnesinka [82]
Sun fives off both of them
4 0
3 years ago
Other questions:
  • A railroad car moves under a grain elevator at a constant speed of 3.20 m/s. Grain drops into the car at the rate of 240 kg/min.
    12·1 answer
  • Which of these is an environmental change that occurs rapidly?
    9·1 answer
  • "a 1,600 kg car is traveling at a speed of 12.5 m/s. what is the kinetic energy of the car?"
    9·1 answer
  • An athlete stretches a spring an extra 28.6 cm beyond its initial length. how much energy has he transferred to the spring, if t
    13·1 answer
  • A woman on a bicycle traveling at 10 m/s on a horizontal road stops pedaling as she starts up a hill inclined at 4.0º to the hor
    12·1 answer
  • An AC voltage of the form Δv = 95 sin 275t where Δv is in volts and t is in seconds, is applied to a series RLC circuit. If R =
    5·1 answer
  • A ball is thrown horizontally from a 16 m -high building with a speed of 2.0 m/s .
    8·1 answer
  • What unit is used for the value of G in Newton's Law of Universal<br> Gravitation?<br> *
    5·1 answer
  • Bedrock that is closer to oceanic ridges is younger in age than bedrock that is farther away. What can best be concluded from th
    9·1 answer
  • Convert time from 12-hour to 24-hour clock. ​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!