1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
victus00 [196]
3 years ago
12

6.39 A particular machine part is subjected in service to a maximum load of 10 kN. With the thought of providing a safety factor

of 1.5, it is designed to withstand a load of 15 kN. If the maximum load encountered in various applications is normally distributed with a standard deviation of 2 kN, and if part strength is normally distributed with a standard deviation of 1.5 kN, what failure percentage would be expected in service? [Ans.: 2.3%]

Engineering
1 answer:
Serggg [28]3 years ago
8 0

Answer:

2.275 %

Explanation:

see the attached picture for detailed answer.

You might be interested in
A(n)_____ is a device that provides the power and motion to manipulate the moving parts of a valve or damper used to control flu
Lesechka [4]

Answer:

Out of the four options provided

option A. actuator

is correct

Explanation:

An actuator is the only device out of the four mentioned devices that provides power and ensures the motion in it in order to manipulate the movement of the moving parts of the damper or a valve used whereas others like ratio regulator are used to regulate air or gas ratio and none mof the 3 remaining options serves the purpose

5 0
3 years ago
Which option identifies the type of device the engineer will develop in the following scenario?
Stells [14]
It would be actuator
4 0
2 years ago
Read 2 more answers
Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra
gladu [14]

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

4 0
3 years ago
You work for a printing company, and you realize that your colleague sent incorrect price quotes to a client. You begin to write
xxTIMURxx [149]

Answer:

The sentence excerpted from the e-mail uses passive voice.  

Given the  purpose of your message, this voice is appropriate.

Explanation:

Because the objective is to remedy the situation a passive voice is great because it emphasizes the action and the object instead of the subject.

We want to emphasize the document and the incorrect information, not our colleague.

4 0
3 years ago
The Micro:bit is considered a what?
Scrat [10]

Sorry need points I'm new

3 0
3 years ago
Other questions:
  • You are a designer of a new processor. You have to choose between two possible implementations (called M1 and M2) of the same ar
    5·1 answer
  • Rolling and Shearing are the types of a)-Bulk Deformation Process b)- Sheet Metal Process c)- Machining Process d)- Both a &
    7·1 answer
  • Use the orange points (square symbol) to plot the initial short-run industry supply curve when there are 20 firms in the market.
    5·1 answer
  • 1. A copper block of volume 1 L is heat treated at 500ºC and now cooled in a 200-L oil bath initially at 20◦C. Assuming no heat
    10·1 answer
  • he Weather Channel reports that it is a hot, muggy day with an air temperature of 90????F, a 10 mph breeze out of the southwest,
    6·1 answer
  • 13. Write a function which is passed two strings. The function creates a new string from the two original strings by copying one
    13·1 answer
  • 4 Error-Correcting Polynomials (a) Alice has a length 8 message to Bob. There are 2 communication channels available. When n pac
    6·1 answer
  • WARNING:<br><br> when people put links in the answer it is a virus DO NOT DOWNLOAD IT
    15·2 answers
  • Disconnecting a circuit while in operation can create a voltage blank
    15·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!