Answer:
The tension in the rope at the lowest point is 270 N
Explanation:
Given;
weight of the ball, W = 150 N
length of the rope, r = 4 m
velocity of the ball, v = 5.6 m/s
When the ball passes through the lowest point, the tension on the rope is the sum of weight of the ball and centripetal force.
T = W + F
Centripetal force, F = mv²/r
where;
m is the mass of the ball
m = W/g
m = 150 / 9.8 = 15.306 kg
Centripetal force, F = mv²/r
F = (15.306 x 5.6²)/4
F = 120 N
T = W + F
T = 150 + 120
T = 270 N
Therefore, the tension in the rope at the lowest point is 270 N
Answer:
Free convection:
When heat transfer occurs due to density difference between fluid then this type of heat transfer is know as free convection.The velocity of fluid is zero or we can say that fluid is not moving.
Force convection:
When heat transfer occurs due to some external force then this type of heat transfer is know as force convection.The velocity of fluid is not zero or we can say that fluid is moving in force convection.
Heat transfer coefficient of force convection is high as compare to the natural convection.That is why heat force convection reach a steady-state faster than an object subjected to free-convection.
We know that convective heat transfer given as
q = h A ΔT
h=Heat transfer coefficient
A= Surface area
ΔT = Temperature difference
Answer:
(a) E = 0 N/C
(b) E = 0 N/C
(c) E = 7.78 x10^5 N/C
Explanation:
We are given a hollow sphere with following parameters:
Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C
R = radius of sphere = 26.1 cm = 0.261 m
Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²
The formula for the electric field intensity is:
E = (1/4πεo)(Q/r²)
where, r = the distance from center of sphere where the intensity is to be found.
(a)
At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.
<u>E = 0 N/C</u>
(b)
Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).
<u>E = 0 N/C</u>
(c)
Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:
E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]
<u>E = 7.78 x10^5 N/C</u>
C because i know what i’m taking about