Since this traffic flow has a jam density of 122 veh/km, the maximum flow is equal to 3,599 veh/hr.
<u>Given the following data:</u>
- Jam density = 122 veh/km.
<h3>How to calculate the
maximum flow.</h3>
According to Greenshield Model, maximum flow is given by this formula:

<u>Where:</u>
is the free flow speed.
is the Jam density.
In order to calculate the free flow speed, we would use this formula:

Substituting the parameters into the model, we have:

Max flow = 3,599 veh/hr.
Read more on traffic flow here: brainly.com/question/15236911
Answer:
<em>No, the velocity profile does not change in the flow direction.</em>
Explanation:
In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, <em>then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.</em>
Answer:
Half-wave rectifier converts an AC signal into a DC signal. It's called a half-wave because it only rectify the positive part of an AC signal.
AC Signal = An electrical signal that alternates between positive and negative voltage.
DC Signal = An electrical signal that only has positive voltage.
Rectify = A fancy word for converting something.
Adding a capacitor helps the positive part of the signal stay on longer. This work because the capacitor stores energy kinda like a battery. During the negative part of the AC signal, the energy stored in the capacitor will be drained and used, then the cycle repeats.
The load resistor is just there to prevent a short circuit from happening.
Answer:
☐ NE-SW
Explanation:
Based on the description, the rock direction is North East - South West (NE-SW). Rocks generally can expand or compress depending on the type and magnitude of stress applied on the rocks. However, if the applied stress is sufficiently high, cracks and fractures will be created on the rock and it can ultimately lead to the formation of particles.
Answer:
Kinetic energy can be used to develop electric energy which can be used as electricity.
Explanation:
The kinetic energy can be harnessed; much like some hydro power technologies harness water movement. A way to convert this kinetic energy into electric energy is through piezoelectric. By applying a mechanical stress to a piezoelectric crystal or material an electric current will be created and can be harvested.
Kinetic energy is also generated by the human body when it is in motion. Studies have also been done using kinetic energy and then converting it to other types of energy, which is then used to power everything from flashlights to radios and more.