Coulombs law says that the force between any two charges depends on the amount of charges and distance between them. This force is directly proportional to the magnitude of the two charges and inversely proportional to the distance between them.

where
are charges,
is the distance between them and k is the coulomb constant.
case 1:

case 2

case 3:

Comparing the 3 cases:
The maximum potential force according to coulombs law is between -1 charge and +3 charge separated by a distance of 100 pm.
<span>The work output of a machine divided by the work input is the "Efficiency" of the machine.
Hope this helps!</span>
Answer:
False
Explanation:
Most comets are located outside the solar system, in part of the cloud that originated from dust and gas that has remained virtually untouchable for billions of years. The orbit of these comets can reach the order of a light year. Thus, they are called long-period comets.
Answer:
1.97 * 10^8 m/s
Explanation:
Given that:
n = 1.52
Recall : speed of light (c) = 3 * 10^8 m/s
Speed (v) of light in glass:
v = speed of light / n
v = (3 * 10^8) / 1.52
v = 1.9736 * 10^8
Hence, speed of light in glass :
v = 1.97 * 10^8 m/s
a) At a position of 2.0m, the Initial energy is
all made up of the potential energy=m*g*hi<span>
and meanwhile at 1.5 all its energy is also potential energy=m*g*hf
The percentage of energy remaining is E=m*g*hi/m*g*hf x 100
and since mass and gravity are constant so it leaves us with
just E=hi/hf
which 1.5/2.0 x100= 75% so we see that we lost 25% of the
energy or 0.25 in fraction
b) Here use the equation vf^2=vi^2+2gd
<span>where g is gravity, vf is the final velocity and vi is the
initial velocity while d is the distance travelled
so in here we are looking for the vi so let us isolate that
variable
we know that at maximum height or peak, the velocity is 0 so
vf is 0
therefore,</span></span>
vi =sqrt(-2gd) <span>
vi =sqrt(-2x-9.81x1.5) </span>
<span>vi =5.4 m/s
<span>c) The energy was converted to heat due to friction with the
air and the ground.</span></span>