I think it is "Known".
Radioactive decay is measured using a formula where the half-life <span>of an isotope is the time it takes for the original nuclei to decay half of its original amount.</span>
Enthalpy of formation is calculated by subtracting the total enthalpy of formation of the reactants from those of the products. This is called the HESS' LAW.
ΔHrxn = ΔH(products) - ΔH(reactants)
Since the enthalpies are not listed in this item, from reliable sources, the obtained enthalpies of formation are written below.
ΔH(C2H5OH) = -276 kJ/mol
ΔH(O2) = 0 (because O2 is a pure substance)
ΔH(CO2) = -393.5 kJ/mol
ΔH(H2O) = -285.5 kJ/mol
Using the equation above,
ΔHrxn = (2)(-393.5 kJ/mol) + (3)(-285.5 kJ/mol) - (-276 kJ/mol)
ΔHrxn = -1367.5 kJ/mol
<em>Answer: -1367.5 kJ/mol</em>
Answer:
All elements of period 7 are radioactive. This period contains the actinides, which includes plutonium, the naturally occurring element with the heaviest nucleus; subsequent elements must be created artificially.
Explanation:
hope u understand :)
Answer:
The heat of formation = Heat of formation of the products - Heat of formation of the reactants
= -2323 + 104 = -2219 ≈ -2218.6 kJ/mol.
Explanation:
The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be transferred from one system to another, but the total remains the same
The heat of formation of C₃H₈ is 3C + 4 H₂ → C₃H₈
-104 kJ/mol
The heat of formation of O₂ is O₂ (g) → O₂ (g)
0 kJ/mol
The heat of formation of H₂O is H₂(g) + 1/2 O₂→ H₂O (g)
-286kJ/mol
The heat of formation of CO₂ is C (s) + O₂ (g) → CO₂ (g)
-393 kJ/mol
Therefore, in the given reaction we have;
C₃H₈ + 4 O₂ → 3 CO₂ + 4 H₂O
The heat of formation = Heat of formation of the products - Heat of formation of the reactants
The heat of formation = 3 × (-393) + 4 × (-286) - (-104) = -2219 ≈ -2218.6 kJ/mol.
I don't know what you mean by just good, but electricity wise, no. In electricity they can't conduct very well and are just so called "heat carriers." They also have higher melting and/or boiling points. I found most of this on google so if you still are lost try looking up your question. Good luck! :)