Answer:
0.5 m/s north
Explanation:
Take east to be +x, west to be -x, north to be +y, and south to be -y.
His displacement in the x direction is:
x = 20 m − 20 m = 0 m
His displacement in the y direction is:
y = 10 m
His total displacement is therefore 10 m north.
His velocity is equal to displacement divided by time.
v = 10 m north / 20 s
v = 0.5 m/s north
Answer:
Y component = 32.37
Explanation:
Given:
Angle of projection of the rocket is, 
Initial velocity of the rocket is, 
A vector at an angle
with the horizontal can be resolved into mutually perpendicular components; one along the horizontal direction and the other along the vertical direction.
If a vector 'A' makes angle
with the horizontal, then the horizontal and vertical components are given as:

Here, as the velocity is a vector quantity and makes an angle of 33.6 with the horizontal, its Y component is given as:

Plug in the given values and solve for
. This gives,

Therefore, the Y component of initial velocity is 32.37.
Density = (mass) divided by (volume)
We know the mass (2.5 g). We need to find the volume.
The penny is a very short cylinder.
The volume of a cylinder is (π · radius² · height).
The penny's radius is 1/2 of its diameter = 9.775 mm.
The 'height' of the cylinder is the penny's thickness = 1.55 mm.
Volume = (π) (9.775 mm)² (1.55 mm)
= (π) (95.55 mm²) (1.55 mm)
= (π) (148.1 mm³)
= 465.3 mm³
We know the volume now. So we could state the density of the penny,
but nobody will understand what we have. Here it is:
mass/volume = 2.5 g / 465.3 mm³ = 0.0054 g/mm³ .
Nobody every talks about density in units of ' gram/(millimeter)³ ' .
It's always ' gram / (centimeter)³ '.
So we have to convert our number for the volume.
(0.0054 g/mm³) x (10 mm / cm)³
= (0.0054 x 1,000) g/cm³
= 5.37 g/cm³ .
This isn't actually very close to what the US mint says for the density
of a penny, but it's in a much better ball park than 0.0054 was.
Answer:
A
Explanation:
because the speed divide by the frequency is equal to the wavelength(in meters)
5×10² m
The car mas more mass than a bicycle. Newton's second law states force equals mass times acceleration.