Answer:
angular speed of both the children will be same
Explanation:
Rate of revolution of the merry go round is given as
f = 4.04 rev/min
so here we have

here we know that angular frequency is given as



now this is the angular speed of the disc and this speed will remain same for all points lying on the disc
Angular speed do not depends on the distance from the center but it will be same for all positions of the disc
Answer:
7.8 m/s
Explanation:
Here object is falling with a gravitational acceleration there for we can take acceleration = 10 m/ s² and its constant through out the motion there for we can use motion equation
V = U + at
V - Final velocity
U - Initial velocity
a - acceleration
t - time
V=U+at
107.8=U + 10×10
= 7.8 m/s
Translate please, i’d be able to help better:)
Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11