The ball only accelerates during the brief time that the club is in contact
with it. After it leaves the club face, it takes off at a constant speed.
If it accelerates at 20 m/s² during the hit, then
Force = (mass) x (acceleration) = (0.2kg) x (20 m/s²) = <em>4 newtons</em> .
Answer:
C. Waves transfer energy, but not matter.
Explanation: hope this helps :)
Answer:
a)
Weight in Air = 0.3N
Weight in Water = 0.25N
Weight in Liquid = 0.24N.
Upthrust /Buoyant Force = Weight in Air – Weight in Fluid(Water in this case)
= 0.3 – 0.25
= 0.5N.
b) R.D of Body = Density of Body/Density of Standard Fluid(Water).
There's a Derived Formula for RD.
I'm gonna Apply it here.
Ask me for the derivation in the Comment section if you need it.
RD = α/ρ = (Weight in Air) / (Upthrust Force)
Where
α = density of the Body(or reference substance)
ρ = density of standard fluid (water)
= 0.3/0.05 = 6.
c) RD of Liquid = (Density of Liquid) /(Density of standard Fluid(water)
Or we just go by that formula
RD of Liquid = Weight in Air/Upthrust(In Liquid)
We'll be using the Upthrust in that Liquid now.
= 0.3 – 0.24 = 0.06
RD = 0.3/0.06 = 5.
Answer:
You can listen to music while doing either one, or you can get someone else to help you that way you have someone to talk to also you finish faster.
Answer:
6
Explanation:
Given that
dsinθ = mλ,
now, if sinθ = 1, then
m = d / λ, where
m = order of interference
d = distance between the slits
λ = wavelength of light
this is the formula we would use to solve the question
d = 1 / 320 lines/mm
d = 1 / 320*10^3
d = 3.125*10^-6 m
At λ = 551 nm, we have
m = 3.125*10^-6 / 551*10^-9
m = 5.67
5.67 ~ 6
thus, we can say that the orders of visible wavelength 551 nm, can produce is 6