Answer:
14.14 m/s
Explanation:
As total mechanical energy is conserved, if the potential energy is the same at Chad's position no matter if the ball is travelling up or down, then its kinetic energy, and speed, is also the same too.
Therefore, the ball would have a speed of 10m/s when it's passing Chad the 1st time. Since we know that Chad is at 5m high from the release point, we can use the following equation of motion:

where v = 10 m/s is the velocity of the ball when it passes Chad, v_0 is the initial velocity of the ball when it releases, g = 10 m/s2 is the deceleration of the can, and
is the distance traveled between Nicole and Chad. We can solve for v0:




Germinal stage. 1.1 Fertilization. 1.2 Cleavage. 1.3 Blastulation. 1.4 Implantation. 1.5 Embryonic disc.
Gastrulation.
Neurulation.
Development of organs and organ systems.
Answer:
5069.04 seconds
Explanation:
The parameter we are looking for is called the Orbital period of the Hubble Space Telescope.
It is given as:

where r = radius of orbit of Hubble Space Telescope
G = gravitational constant = 
M = Mass of earth
We are given that:
r = radius of the earth + distance of HST from earth
r = 
M = 
Therefore, T will be:


The orbital period of the Hubble Space Telescope is 5069.04 seconds.
Answer:
3.0 x 10¹ Nm
Explanation:
Torque = F x r
Where F is force applied and r is perpendicular distance from pivot point . r
is also called lever arm
Here F = 15 N and r = 2.0 m
Torque
= 15 N X 2.0 m
= 3.0 10¹ Nm.