A. K+, OH-
B. C6H5CO+, OH-
C. NH4+, Cl-
D. Mg++, 2 NO3-
Everything has 1 except for the Nitrate ion in D, which has 2
Answer:
protons : 10
electron : 10
neutron : 10
Explanation:
Protons will usually be the same as the electrons when its a <u>Atom</u> (when its a ion or covalent bond or simple bond they will most likely be different)
the atomic number represents protons and electrons
the mass number - the atomic number = neutron
The question is incomplete, the complete question is;
One tank of goldfish is feed the normal amount which is once a day, a second tank is fed twice a day, and a third tank is fed four times a day during a 6 week study. The fishes' body fat is recorded daily.
Independent Variable-
Dependent Variable-
Constants
Control Group-
Answer:
A) The amount of food the gold fish receives
B) Body fat of the gold fish
C) -Type of fish used in the study (gold fish)
Time period within which the fishes were fed (Six week period)
Shape and size of tank
D) group of gold fish fed the normal amount
Explanation:
The purpose of the study is to determined the impact of amount of feed on the body fat of gold fish. Hence, the amount of feed is the independent variable while the body fat of the feed is the dependent variable.
The control group receives the normal amount of feed (once a day). The fishes are all gold fish, fed within a six week period. All the tanks were of the same shape and size. These are the constants in the study.
Answer:
- 602 mg of CO₂ and 94.8 mg of H₂O
Explanation:
The<em> yield</em> is measured by the amount of each product produced by the reaction.
The chemical formula of <em>fluorene</em> is C₁₃H₁₀, and its molar mass is 166.223 g/mol.
The <em>oxidation</em>, also know as combustion, of this hydrocarbon is represented by the following balanced chemical equation:

To calculate the yield follow these steps:
<u>1. Mole ratio</u>

<u />
<u>2. Convert 175mg of fluorene to number of moles</u>
- Number of moles = mass in grams / molar mass
<u>3. Set a proportion for each product of the reaction</u>
a) <u>For CO₂</u>
i) number of moles


ii) mass in grams
The molar mass of CO₂ is 44.01g/mol
- mass = number of moles × molar mass
- mass = 0.013686 moles × 44.01 g/mol = 0.602 g = 602mg
b) <u>For H₂O</u>
i) number of moles

ii) mass in grams
The molar mass of H₂O is 18.015g/mol
- mass = number of moles × molar mass
- mass = 0.00526 moles × 18.015 g/mol = 0.0948mg = 94.8 mg