Answer:
2. You must be able to precisely measure variations in the star's brightness with time.
5. As seen from Earth, the planet's orbit must be seen nearly edge–on (in the plane of our line-of-sight).
6. You must repeatedly obtain spectra of the star that the planet orbits.
Explanation:
The transit method is a very important and effective tool for discovering new exoplanets (the planets orbiting other stars out of the solar system). In this method the stars are observed for a long duration. When the exoplanet will cross in front of theses stars as seen from Earth, the brightness of the star will dip. To observe this dip following conditions must be met:
1. The orbit of the planet should be co-planar with the plane of our line of sight. Then only its transition can be observed.
2. The brightness of the star must be observed precisely as the period of transit can be less than a second as seen from Earth. Also the dip in brightness depends on the size of the planet. If the planet is not that big the intensity dip will be very less.
3. The spectrum of the star needs to be studied and observe during the transit and normally to find out the details about the planets.
4. Also, the orbital period should be less than the period of observation for the transit to occur at least once.
Answer;
Uniformitarianism
Explanation;
-Uniformitarianism is the principle suggesting that Earth's geologic processes acted in the same manner and with essentially the same intensity in the past as they do in the present and that such uniformity is sufficient to account for all geologic change. For example, at an active volcano we can observe lava cooling to form layers of basalt.
James Hutton suggested that deep soil profiles were formed by the weathering of bedrock over thousands of years. He also suggested that supernatural theories were not needed to explain the geologic history of the Earth.
The final velocity is 2.7 m/s
Explanation:
We can solve this problem by using the principle of conservation of momentum: in fact, in absence of external forces, the total momentum of the system must be conserved before and after the collision.
Therefore we can write:
where:
is the mass of the putty
is the initial velocity of the putty (we take its direction as positive direction)
is the mass of the ball
is the initial velocity of the ball (at rest)
is the final combined velocity of the two putty+ball
Re-arranging the equation and substituting the values, we find the final combined velocity:
And the positive sign indicates their final direction is the same as the initial direction of the putty.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Explanation:
The moment of inertia of each disk is:
Idisk = 1/2 MR²
Using parallel axis theorem, the moment of inertia of each rod is:
Irod = 1/2 mr² + m (R − r)²
The total moment of inertia is:
I = 2Idisk + 5Irod
I = 2 (1/2 MR²) + 5 [1/2 mr² + m (R − r)²]
I = MR² + 5/2 mr² + 5m (R − r)²
Plugging in values:
I = (125 g) (5 cm)² + 5/2 (250 g) (1 cm)² + 5 (250 g) (5 cm − 1 cm)²
I = 23,750 g cm²