1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
4 years ago
14

is to the east. (i) Automobile A travels 50 km due east. (ii) Automobile B travels 50 km due west. (iii) Automobile C travels 60

km due east, then turns around and travels 10 km due west. (iv) Automobile D travels 70 km due east. (v) Automobile E travels 20 km due west, then turns around and travels 20 km due east. (a) Rank the five trips in order of average x-velocity from most positive to most negative. (b) Which trips, if any, have the same average x-velocity? (c) For which trip, if any, is the average x-velocity equal to zero?
Physics
1 answer:
kenny6666 [7]4 years ago
5 0

Complete Question:

Each of the following trips lasts exactly one hour. The positive direction is to the east.

(i) Automobile A travels 50 km due east. (ii) Automobile B travels 50 km due west. (iii) Automobile C travels 60 km due east, then turns around and travels 10 km due west. (iv) Automobile D travels 70 km due east. (v) Automobile E travels 20 km due west, then turns around and travels 20 km due east. (a) Rank the five trips in order of average x-velocity from most positive to most negative. (b) Which trips, if any, have the same average x-velocity? (c) For which trip, if any, is the average x-velocity equal to zero?

Answer:

a) 1. (iv) 2.) (i) and (iii). 3. (v) 4.(ii)

Explanation:

By definition, the average velocity, can be expressed as the total displacement (the difference between the final and initial position), divided by the time interval during which we define the displacement.

We can put these words in an equation format as follows:

vavg,x = \frac{xf-xo}{t-to}

If we choose x₀ = 0 and t₀ = 0, the average velocity is just the final position over one hour.

The final positions, in the five trips, are as follows:

(i) = +50 Km (2nd)

(ii) = -50 Km (4th)

(iii)  + 60 Km -10 Km = + 50 km (2nd)

(iv) = + 70 km (1st)

(v) = -20 km + 20 Km = 0 (3rd)

b) As stated above, the trips (i) and (iii) have the same average x-velocity.

c) As stated above, in trip (v) as the total displacement is 0, average -velocity is 0 also.

You might be interested in
Extreme tides are
nasty-shy [4]
This are tides that are very high and reach up the beach
7 0
3 years ago
4.- Una vagoneta de 1000 kg de peso parte del reposo en el punto 1 y desciende, sin rozamiento, por la vía indicada en la figura
Akimi4 [234]

Answer:

A) 49,050 N

B) 16 m

Explanation:

Question:

El dibujo de la pregunta se obtiene de un documento titulado "TRABAJO DIVERSO Y ENERGÍA" que se encuentra en línea y se presenta aquí.

La masa dada del vagón, m = 1,000 kg

La altura del punto en el que descansa el vagón, punto 1, h₁ = 12 m

A) El radio en el punto 2, el punto más bajo, R = 6 m

La fuerza, 'N', que la vía ejerce sobre el vagón en el punto 1 viene dada por la siguiente relación;

N = El peso del vagón + La fuerza de movimiento del vagón

∴ N = m × g + m × a

Dónde;

g = La aceleración debida a la gravedad ≈ 9,81 m / s²

a = La aceleración del vagón

Observamos que para el movimiento circular, la fuerza de movimiento del vagón, m × a = La fuerza centrípeta que actúa sobre el vagón = m × v² / R

∴ m × a = m × v² / R

Dónde;

v² = La velocidad del vagón en el punto 2 = 2 · g · h₁

Por lo tanto;

N = m × g + m × a = m × g + m × v² / R = m × g + m × 2 · g · h₁ / R

∴ N = 1000 × 9,81 + 1000 × 2 × 9,81 × 12/6 = 49,050

La fuerza que ejerce el vagón en el punto 2, N = 49,050 N

B) En el punto 3, tenemos;

N = m · g - m · a₃

La fuerza centrípeta en el punto 3, m · a₃ = m · v₃² / R₃

∴ La altura en el punto 3, h₃ = 4 m

El cuadrado de la velocidad en el punto 3, v₃² = 2 · g · (h₁ - h₃)

Para que el vagón esté seguro en el punto 3, la fuerza de la vía sobre el vagón, N = 0 para que el vagón permanezca en la vía actuando

Por lo tanto;

N = m · g - m · a₃ = 0

m · g = m · a₃ = m · v₃² / R₃ = m · (2 ​​· g · (h₁ - h₃)) / R₃

∴ R₃ = (2 · g · (h₁ - h₃)) / g = (2 · (h₁ - h₃)) = 2 × (12 - 4) = 16

El radio de curvatura en el punto 3 para que el punto sea seguro es R₃ = 16 m.

5 0
3 years ago
How to do this question
Yuki888 [10]

Answer:

64°

Explanation:

The triangle is an isosceles triangles (both legs are equal to the radius of the circle), so that means the base angles are the same.

Angles of a triangle add up to 180°, so:

128 + 2x = 180

2x = 52

x = 26

∠1 is complementary to the base angle, so:

∠1 = 90 − 26

∠1 = 64

7 0
3 years ago
An ideal parallel-plate capacitor consists of a set of two parallel plates of area A separated by a very small distance d. When
sleet_krkn [62]

Answer:

2dQ²/2εA = 2U₀

Explanation:

The energy stored in the ideal parallel plate capacitor U = Q²/2C. For a parallel plate capacitor, C = εA/d where A is the area between the plates and D is the distance between them. So

U = Q²/2C = Q²/2εA/d = dQ²/2εA. At distance d₁ = d, U = U₀,

U₀ = dQ²/2εA,

When d₂ = 2d, U₁ = d₂Q²/2εA = 2dQ²/2εA = 2U₀

3 0
3 years ago
A football punter wants to kick the ball so that it is in the air for 4.2 s and lands 55 m from where it was kicked. Assume that
earnstyle [38]

Answer:

57.24^{\circ}

24.21 m/s

Explanation:

x = Displacement in x direction = 55 m

y = Displacement in x direction = 0

y_0 = Height of the ball when the ball is kicked = 1 m

t = Time taken = 4.2 s

a_y=g = Acceleration due to gravity = -9.81\ \text{m/s}^2

u = Initial velocity of ball

Displacement in x direction is given by

x=u_xt+\dfrac{1}{2}a_xt^2\\\Rightarrow 55=4.2u_x+0\\\Rightarrow u_x=\dfrac{55}{4.2}\\\Rightarrow u\cos\theta=13.1\ \text{m/s}\\\Rightarrow u=\dfrac{13.1}{\cos\theta}

Displacement in y direction is given by

y=y_0+u_yt+\dfrac{1}{2}a_yt^2\\\Rightarrow 0=1+4.2u\sin\theta+\dfrac{1}{2}\times (-9.81)\times 4.2^2\\\Rightarrow 0=4.2u\sin\theta-85.5242\\\Rightarrow u\sin\theta=20.36\ \text{m/s}\\\Rightarrow u=\dfrac{20.36}{\sin\theta}

\dfrac{13.1}{\cos\theta}=\dfrac{20.36}{\sin\theta}\\\Rightarrow \dfrac{20.36}{13.1}=\dfrac{\sin\theta}{\cos\theta}\\\Rightarrow \theta=\tan^{-1}\dfrac{20.36}{13.1}\\\Rightarrow \theta=57.24^{\circ}

The ball should be kicked at an angle of 57.24^{\circ}

u=\dfrac{13.1}{\cos\theta}=\dfrac{13.1}{\cos57.24^{\circ}}\\\Rightarrow u=24.21\ \text{m/s}

The initial speed of the ball is 24.21 m/s.

3 0
3 years ago
Other questions:
  • What is the effect on current if both the voltage and the resistance are halved?
    8·1 answer
  • WILL GIVE YOU A MEDAL!!<br><br> To increase the current in a circuit, the _____ can be increased
    8·2 answers
  • Which are examples of projectile motion?
    13·1 answer
  • Date
    8·1 answer
  • What formal regions are located in the western hemisphere
    12·1 answer
  • A push or a pull on an object is known as a(n)
    6·2 answers
  • The starting position is 0m. The starting velocity is 30m/s. Time is given as 2.5s. What is the final position of the object?
    7·1 answer
  • If a 2 kg ball is moving at 6 m/s to the right and then hits a wall and bounces back at - 4 m/s (left), what is the change in mo
    12·1 answer
  • Briefly discuss why the use of general intelligence testing has declined in personnel selection.
    11·1 answer
  • A current magnetic relay is often used to assist in the starting of the compressor, but most new appliances use a(n) ___________
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!