What is the question asking?
Answer:
Drawing the triangle:
H / x = tan 52.2 = 1.29
H / (4.6 - x) = tan 28.8 = .550
H = 1.29 x
H = .55 * 4.6 - .55 x
1.84 x = 2.53 combining equations
x = 1.38
4.6 - 1.38 = 3.22
Total base of triangle = 1.38 + 3.22 = 4.6
H / x = tan 52,2 = 1.29
H = 1.29 * 1.38 = 1.78 height of triangle
Check:
1.78 / 3.22 = tan 28.9
This agrees with the given value of 28.8
A) average acceleration = final velocity - initial velocity / time
= 7700 - 0 / 11
= 700ms^-2
B) force = mass x acceleration
= (3.05 x 105) x 700
= 320.25 x 700
= 224,175N
Answer:
32000 N
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Mass (m) of car = 400 Kg
Force (F) =?
Next, we shall determine the acceleration of the the car. This can be obtained as follow:
Initial velocity (u) = 40 m/s
Distance (s) = 10 m
Final velocity (v) = 0 m/s
Acceleration (a) =?
v² = u² + 2as
0² = 40² + (2 × a × 10)
0 = 1600 + 20a
Collect like terms
0 – 1600 = 20a
–1600 = 20a
Divide both side by –1600
a = –1600 / 20
a = –80 m/s²
The negative sign indicate that the car is decelerating i.e coming to rest.
Finally, we shall determine the force needed to stop the car. This can be obtained as follow:
Mass (m) of car = 400 Kg
Acceleration (a) = –80 m/s²
Force (F) =?
F = ma
F = 400 × –80
F = – 32000 N
NOTE: The negative sign indicate that the force is in opposite direction to the motion of the car.