The acceleration of the object which moves from an initial step to a full halt given the distance traveled can be calculated through the equation,
d = v² / 2a
where d is distance, v is the velocity, and a is acceleration
Substituting the known values,
180 = (22.2 m/s)² / 2(a)
The value of a is equal to 1.369 m/s²
The force needed for the object to be stopped is equal to the product of the mass and the acceleration.
F = (1300 kg)(1.369 m/s²)
F = 1779.7 N
Your pendulum does a complete swing in 1.9 seconds. You want to SLOW IT DOWN so it takes 2.0 seconds.
Longer pendulums swing slower.
You need to <em>make your pendulum slightly longer</em>.
If your pendulum is hanging by a thread or a thin string, then its speed doesn't depend at all on the weight at the bottom. You can add weight or cut some off, and it won't change the speed a bit.
Answer:
12 Neutrons
Explanation:
So the mass of sodium is 22.990. You round it up to get 23(as stated in the problem). So, <em>what exactly is atomic mass?</em>
Atomic Mass is the total amount of neutrons and protons added up to form a total mass. So when you subtract 23-11 you get 12 Neutrons.
<u>Tip: </u>Don't know if you need this but-
The neutrons and protons are typically close in number (unless it's an isotope). So say that you subtract and the numbers of protons and neutrons aren't close at all. Well if that's the case, it's probably wrong.
hope this helps!!
The acceleration produced in a body is always in the direction of the resultant force acting on the body. Therefore, we may determine the horizontal acceleration using the horizontal force applied. To do this, we may apply the mathematical form of Newton's second law:
Force = mass * acceleration
acceleration = force / mass
Substituting the values,
a = 100 / 0.15
a = 666.7 m/s²
The acceleration of the hockey puck is 670 m/s²