Air pressure is the wi get of air molecules pressing down on the earth. The pressure of the air molecules changes as you move upward from sea level into the atmosphere, the highest pressure is at sea level where the density of the air molecules is the greatest.
Three things that effect a life system would be
- sunlight
-water
-energy/food
Hope this helps
Answer:
The asteroid belt is a region of our solar system, between the orbits of Mars and Jupiter, in which many small bodies orbit our sun.
Explanation:
Hope this helps!
More cool stars produce much of their light in the red part of the spectrum, so you see them, and bam, the color red. More hot stars, however, produce much more of their light in the green and or yellow spectrums, with much more tinier amounts of red / blue. This balance of the colors, your eye, sees simply as white. The more hot something is, the greater frequency of radiation it produces! Blue light has a higher frequency than red light, so the stars that glow red are cooler, than the stars that glow blue. :)
Hope this helped!
Assume no air resistance, and g = 9.8 m/s².
Let
x = angle that the initial velocity makes with the horizontal.
u = 30 cos(x), horizontal velocity
v = 30 sin(x), vertical launch velocity
The horizontal distance traveled is 55 m, therefore the time of flight is
t = 55/[30 cos(x)] = 1.8333 sec(x) s
With regard to the vertical velocity, and the time of flight,obtain
[30 sin(x)]*(1.8333 sec(x)) + (1/2)*(-9.8)*(1.8333 sec(x))² = 0
55 tan(x) - 16.469 sec²x = 0
55 tan(x) - 16.469[1 + tan²x] = 0
16.469 tan²x - 55 tan(x) + 16.469 = 0
tan²x - 3.3396 tan(x) + 1 = 0
Solve with the quadratic formula.
tan(x) = 0.5[3.3396 +/- √(7.153)] = 3.007 or 0.3326
Therefore
x = 71.6° or x = 18.4°
The time of flight is
t = 1.8333 sec(x) = 5.8096 s or 1.932 s
The initial vertical velocity is
v = 30 sin(x) = 28.467 m/s or 9.468 m/s
The horizontal velocity is
u = 30 cos(x) = 9.467 m/s or 28.469 m/s
If t = 5.8096 s,
u*t = 9.467*5.8096 = 55 m (Correct)
or
u*t = 28.469*15.8096 = 165.4 m (Incorrect)
Therefore, reject x = 18.4°. The correct solution is
t = 5.8096 s
x = 71.6°
u = 9.467 m/s
v = 28.467 m/s
The height from which the ball was thrown is
h = 28.467*5.8096 - 0.5*9.8*5.8096² = -110.4 m
The ball was thrown from a height of 110.4 m
Answer: h = 110.4 m