1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergiy2304 [10]
3 years ago
11

A 0.600 m long pendulum is used to determine the acceleration due to gravity on a distant plane. If 20 oscillations are complete

d in 35.5 s, the acceleration would be
Physics
1 answer:
katrin2010 [14]3 years ago
6 0

Answer:

7.50 m/s^2

Explanation:

The period of a pendulum is given by:

T=2\pi \sqrt{\frac{L}{g}} (1)

where

L = 0.600 m is the length of the pendulum

g = ? is the acceleration due to gravity


In this problem, we can find the period T. In fact, the frequency is equal to the number of oscillations per second, so:

f=\frac{N}{t}=\frac{20}{35.5 s}=0.563 Hz

And the period is the reciprocal of the frequency:

T=\frac{1}{f}=\frac{1}{0.563 Hz}=1.776 s

And by using this into eq.(1), we can find the value of g:

g=\frac{4 \pi^2 L}{T^2}=\frac{4 \pi^2 (0.600 m)}{(1.776 s)^2}=7.50 m/s^2

You might be interested in
A 60-W, 120-V light bulb and a 200-W, 120-V light bulb are connected in series across a 240-V line. Assume that the resistance o
gulaghasi [49]

A. 0.77 A

Using the relationship:

P=\frac{V^2}{R}

where P is the power, V is the voltage, and R the resistance, we can find the resistance of each bulb.

For the first light bulb, P = 60 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{60 W}=240 \Omega

For the second light bulb, P = 200 W and V = 120 V, so the resistance is

R_1=\frac{V^2}{P}=\frac{(120 V)^2}{200 W}=72 \Omega

The two light bulbs are connected in series, so their equivalent resistance is

R=R_1 + R_2 = 240 \Omega + 72 \Omega =312 \Omega

The two light bulbs are connected to a voltage of

V  = 240 V

So we can find the current through the two bulbs by using Ohm's law:

I=\frac{V}{R}=\frac{240 V}{312 \Omega}=0.77 A

B. 142.3 W

The power dissipated in the first bulb is given by:

P_1=I^2 R_1

where

I = 0.77 A is the current

R_1 = 240 \Omega is the resistance of the bulb

Substituting numbers, we get

P_1 = (0.77 A)^2 (240 \Omega)=142.3 W

C. 42.7 W

The power dissipated in the second bulb is given by:

P_2=I^2 R_2

where

I = 0.77 A is the current

R_2 = 72 \Omega is the resistance of the bulb

Substituting numbers, we get

P_2 = (0.77 A)^2 (72 \Omega)=42.7 W

D. The 60-W bulb burns out very quickly

The power dissipated by the resistance of each light bulb is equal to:

P=\frac{E}{t}

where

E is the amount of energy dissipated

t is the time interval

From part B and C we see that the 60 W bulb dissipates more power (142.3 W) than the 200-W bulb (42.7 W). This means that the first bulb dissipates energy faster than the second bulb, so it also burns out faster.

7 0
3 years ago
A mother and her young child want to play on a seesaw at a playground. The child sits on the end of one side of the seesaw. Wher
EleoNora [17]

Answer:middle

Explanation:

Because it will make the seasaw balanced

4 0
3 years ago
1. A racing car with the driver weighs 1825 lb. Find the kinetic energy in ft*lb when traveling with a speed of 100 mi/hr.
Svetlanka [38]

Answer:

1. 610,000 lb ft

2. 490 J

Explanation:

1. First, convert mi/hr to ft/s:

100 mi/hr × (5280 ft / mi) × (1 hr / 3600 s) = 146.67 ft/s

Now find the kinetic energy:

KE = ½ mv²

KE = ½ (1825 lb / 32.2 ft/s²) (146.67 ft/s)²

KE = 610,000 lb ft

2. KE = ½ mv²

KE = ½ (5 kg) (14 m/s)²

KE = 490 J

6 0
3 years ago
The line of latitude that is zero degrees latitude is the
Nuetrik [128]

Answer:

Equator

Explanation:

The equator is the line of latitude that separates the earth into the northern and southern hemisphere.Its magnitude is 0 degrees latitude. The equator and other lines of latitude are parallel to each other. The lines of longitude which is 0 degrees is known as the Greenwich meridian. The longitudinal lines however are not parallel as they converge at the poles.

7 0
3 years ago
Help with this review pls!!
o-na [289]
40 50 60 85 954 746 ity
5 0
3 years ago
Read 2 more answers
Other questions:
  • if the flower pot in problem 3 falls off the windowsill and falls 20 meters downwards(i.e., is 10 meters from hitting the ground
    13·1 answer
  • A 50 g ball of clay traveling at speed v0 hits and sticks to a 1.0 kg block sitting at rest on a frictionless surface. part a wh
    7·1 answer
  • An organism that breaks down other living things when they die
    14·1 answer
  • A rocket is launched straight up with constant acceleration. Four seconds after liftoff, a bolt falls off the side of the rocket
    8·1 answer
  • A positively charged particle 1 is at the origin of a Cartesian coordinate system, and there are no other charged objects nearby
    13·1 answer
  • Two students, sitting on frictionless carts, push against each other. Both are initially at rest and the mass of student 1 and t
    8·1 answer
  • A force of 9.6 N acts on a 5.1 kg object for 8.2 s. Calculate the object's change in velocity (in m/s).​
    8·1 answer
  • A bag of sugar weights 20 N on the earths surface. If you double the distance from the center of the earth, the bag now weighs w
    15·1 answer
  • before dancing on a smooth wooden floor, ballet dancers sometimes sometimes put a sticky powered called rosin on their shoes sol
    9·1 answer
  • 450 nm of light falls on a single slit of width 0.30 mm. What is the angular width of the central diffraction peak
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!