<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
Answer:
Not possible
Explanation:
= longitudinal modulus of elasticity = 35 Gpa
= transverse modulus of elasticity = 5.17 Gpa
= Epoxy modulus of elasticity = 3.4 Gpa
= Volume fraction of fibre (longitudinal)
= Volume fraction of fibre (transvers)
= Modulus of elasticity of aramid fibers = 131 Gpa
Longitudinal modulus of elasticity is given by

Transverse modulus of elasticity is given by


Hence, it is not possible to produce a continuous and oriented aramid fiber.
Answer:
Part a)

Part b)



Part c)



Explanation:
Part a)
As we know that charge density is the ratio of total charge and total volume
So here the volume of the charge ball is given as



now the charge density of the ball is given as

Part b)
Now the charge enclosed by the surface is given as

at radius of 5 cm


at radius of 10 cm


at radius of 20 cm

Part c)
As we know that electric field is given as

so we have electric field at r = 5 cm


electric field at r = 10 cm


electric field at r = 20 cm


Answer:
The answer is "a, c and b"
Explanation:
- Its total block power is equal to the amount of potential energy and kinetic energy.
- Because the original block expansion in all situations will be the same, its potential power in all cases is the same.
- Because the block in the first case has no initial speed, the block has zero film energy.
- For both the second example, it also has the
velocity, but the kinetic energy is higher among the three because its potential and kinetic energy are higher. - While over the last case the kinetic speed is greater and lower than in the first case, the total energy is also higher than the first lower than that of the second.
- The greater the amplitude was its greater the total energy, therefore lower the second, during the first case the higher the amplitude.
Answer:
1030 mph
Explanation:
The new velocity equals the initial velocity plus the wind velocity.
First, in the x (east) direction:
vₓ = 335 mph + 711 cos 19° mph
vₓ = 1007 mph
And in the y (north) direction:
vᵧ = 0 mph + 711 sin 19° mph
vᵧ = 231 mph
The net speed can be found with Pythagorean theorem:
v² = vₓ² + vᵧ²
v² = (1007 mph)² + (231 mph)²
v ≈ 1030 mph