1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marrrta [24]
3 years ago
12

Answer me fast. Find velocity in Acceleration Time Graph.​

Physics
2 answers:
Ipatiy [6.2K]3 years ago
5 0
Hhshehey is also a savage and I think he was used in a way of being in a relationship and being a father in the lord of the lord and his life and his son didn’t want it as he is in sin and evil being murdered
Slav-nsk [51]3 years ago
4 0

Explanation:

hmmm all of u stay safe

4301154259

Pas 1234

You might be interested in
For a certain RLC circuit the maximum generator EMF is 125 V and the maximum current is 3.20 A. If le a) the impedance of the ci
MAXImum [283]

Answer:

Part (i)

Z = 39.06 ohm

Part (ii)

R = 21.7 ohm

Explanation:

a) here we know that

maximum value of EMF = 125 V

maximum value of current = 3.20 A

now by ohm's law we can find the impedence as

z = \frac{V_o}{i_o}

now we will have

z = \frac{125}{3.20} = 39.06 ohm

Part b)

Now we also know that

\frac{R}{z} = cos\theta

\theta = 0.982 rad = 56.3 degree

now we have

\frac{R}{39.06} = cos56.3

R = 21.7 ohm

5 0
3 years ago
__ is the apparent in the position of an object when viewed from two locations
Yakvenalex [24]
The apparent shift <span>is the apparent in the position of an object when viewed from two locations.

Hope this helps :)</span>
3 0
3 years ago
A loop of wire is in a magnetic field such that its axis is parallel with the field direction. Which of the following would resu
ahrayia [7]

Answer:

All the given options will result in an induced emf in the loop.

Explanation:

The induced emf in a conductor is directly proportional to the rate of change of flux.

emf = -\frac{d \phi}{dt} \\\\where;\\\\\phi \ is \ magnetic \ flux\\\\\phi = BA\ cos \theta

where;

A is the area of the loop

B is the strength of the magnetic field

θ is the angle between the loop and the magnetic field

<em>Considering option </em><em>A</em>, moving the loop outside the magnetic field will change the strength of the magnetic field and consequently result in an induced emf.

<em>Considering option </em><em>B</em>, a change in diameter of the loop, will cause a change in the magnetic flux and in turn result in an induced emf.

Option C has a similar effect with option A, thus both will result in an induced emf.

Finally, <em>considering option</em> D, spinning the loop such that its axis does not consistently line up with the magnetic field direction will<em> </em>change the angle<em> </em>between the loop and the magnetic field. This effect will also result in an induced emf.

Therefore, all the given options will result in an induced emf in the loop.

4 0
3 years ago
Two speakers, one directly behind the other, are each generating a 240-Hz sound wave. What is the smallest separation distance b
AveGali [126]

Answer:

The smallest separation distance between the speakers is 0.71 m.

Explanation:

Given that,

Two speakers, one directly behind the other, are each generating a 240-Hz sound wave, f = 240 Hz

Let the speed of sound is 343 m/s in air. The speed of sound is given by the formula as :

v=f\lambda\\\\\lambda=\dfrac{v}{f}\\\\\lambda=\dfrac{343\ m/s}{240\ Hz}\\\\\lambda=1.42\ m

To produce destructive interference at a listener standing in front of them,

d=\dfrac{\lambda}{2}\\\\d=\dfrac{1.42}{2}\\\\d=0.71\ m

So, the smallest separation distance between the speakers is 0.71 m. Hence, this is the required solution.

3 0
3 years ago
Read 2 more answers
A child whirls a 3.00 kg ball on a string .50 m from the axis of rotation in a horizontal circle. The ball makes 1 revolution in
melamori03 [73]

Answers:

a) 0.5 m/s^{2}

b) 1.5 N

Explanation:

a) The centripetal acceleration a_{c} of an object moving in a uniform circular motion is given by the following equation:  

a_{c}=\omega^{2} r  

Where:

\omega=1 \frac{rev}{s} is the angular velocity of the ball

r=0.5 m is the radius of the circular motion, which is equal to the length of the string

Then:

a_{c}=(1 \frac{rev}{s})^{2} 0.5 m  

a_{c}=0.5 m/s^{2} This is the centripetal acceleration of the ball

b) On the other hand, in this circular motion there is a force (centripetal force F) that is directed towards the center and is equal to the tension (T) in the string:

F=T=m. a_{c}

Where m=3 kg is the mass of the ball

Hence:

T=(3 kg)(0.5 m/s^{2})

T=1.5 N This is the tension in the string

7 0
3 years ago
Other questions:
  • A ball dropped from a height of 50 meters, Determine the speed of the ball after 3 seconds
    15·1 answer
  • A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
    13·1 answer
  • What is dark matter consisted of?
    11·2 answers
  • You want to calculate the displacement of an object thrown over a bridge. Using -10m/s^2 for acceleration due to gravity, what w
    8·1 answer
  • Groups of organs that work together to complete a process in the body are called:
    11·2 answers
  • The way light bounces off a minerals surface is described by the minerals?
    13·1 answer
  • I really need help with this question someone plz help !
    6·1 answer
  • If a dog that has moved has a displacement of zero, it means that the dog's initial position and final position are the same. Is
    12·1 answer
  • In an experiment in which molten naphthalene is allowed to cool, the cooling curve shown below was obtained, the temperature 80∘
    8·1 answer
  • If everything lines up perfectly for superposition to occur, these massive waves would break with a force of 100 metric tons per
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!