a) Let's call x the direction parallel to the river and y the direction perpendicular to the river.
Dave's velocity of 4.0 m/s corresponds to the velocity along y (across the river), while 6.0 m/s corresponds to the velocity of the boat along x. Therefore, the drection of Dave's boat is given by:

relative to the direction of the river.
b) The distance Dave has to travel it S=360 m, along the y direction. Since the velocity along y is constant (4.0 m/s), this is a uniform motion, so the time taken to cross the river is given by

c) The boat takes 90 s in total to cross the river. The displacement along the y-direction, during this time, is 360 m. The displacement along the x-direction is

so, Dave's landing point is 540 m downstream.
d) If there were no current, Dave would still take 90 seconds to cross the river, because its velocity on the y-axis (4.0 m/s) does not change, so the problem would be solved exactly as done at point b).
I will assume here that the well is sufficiently short so that the time the sound takes to come from the bottom of the well to our ear is negligible.
Since the pebble moves by uniformly accelerated motion, the distance it covers is given by

where

is the gravitational acceleration

is the time the pebble takes to reach the bottom of the well
Therefore, the depth of the well is

and the correct answer is B.
Answer: 13.2 seconds.
Explanation: using equation of motion; S= ut +1/2at² where u = initial velocity=0
S= distance travelled
a = acceleration due gravity
t= time.
1 foot = 0.305m so,
S= 2860 feet =872.3m
S= ut+1/2 at²
872.3 = 0×t + 1/2×10 × t²
872.3 =0 + 5t²
T²= 872.3/5
T²= 174.46
Take the square root of T we then have;
t = 13.2 seconds to one decimal place.
Answer
oh thanksssss i hope u have a great day
Explanation:
ur a really awesome person and i thank u for that